CHAPTER 8
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8.1 Linear Second Order Circuits

n Circuits containing two energy storage elements.

n Described by differential equations that contain
second order derivetives.

n Need two initial conditions to get the unique
solution.

8.1 Linear Second Order Circuits

N Examples
(@) RLC parallél circuit

(b) RLC series circuit




8.1 Linear Second Order Circuits

(c) 2L+R, RL circuit

(d) 2C+R, RC circuit

8.2 Solution Steps

Stepl : Choose nodal analysis or mesh
analysis approach

Step2 : Differentiate the eguation as many
times as required to get the standard
form of a second order differential
equation .

d®x , dx
a—-+tb—+x=y(t




8.2 Solution Steps

Step 3 : Solving the differential equation
(1) hemogeneous solution
(2) particular solution

X(1) = X, (1) + X, (1

Step 4 : Find the initial conditions
x(0") Elflel and then get the
unique solution

8.3 Finding I nitial VValues

Under DC steady state, L islike a short circuit
and C is like an open circuit.




8.3 Finding I nitial VValues

Under transient condition, L islike an open circuit
and C islike ashort circuit because i (t) and v(t)
are continuous functions if the input is bounded.

8.3 Finding I nitial VValues

Under transient condition, L islike an open circuit
and C islike ashort circuit because i (t) and v(t)
are continuous functions if the input is bounded.

= > ve(ty) | ve(te) >0




8.3 Finding I nitial VValues

M use the

To find M and
dt

following relations
d| 0"
A~y @) =210

dt

2@ - o >dvc(0): c(0>
dt dt C

Onecan find v (0" )and i, (0" ) using either

nodal or mesh analysis.

V(O)

8.3 Finding I nitial VValues
n Example 1

40 0.25H The circuit is under steady state.

i The switch is opened at t =0
2Q% 0.1EL

7\/:0

VJFind: (2)i(07), %i(@)

+ d +
B) V(07 VO
(C)i(¥) . v(¥)




8.3 Finding I nitial VValues

n Example 1 (cont.)

40  0.25H

1
203 0.1F)

7\50

i(0)=2A

v(0) =4V
L (0" = i(0)=2A
v(0") = v(0) = 4V

8.3 Finding I nitial VValues
n Example 1 (cont.)

4Q  025H
i
203 0.17]

7\50




8.3 Finding I nitial VValues

n Example 1 (cont.)

KVL: 2A° 4 + v (0') +4V = 12V
\ v, (0)=0

d.
\ —i(0") =0
dt()

KCL: i.(0") = 2A
d
\ —v(0")=0
o @)

2 20 VIS
0.1

8.3 Finding I nitial VValues
n Example 1 (cont.)

Lisshort circuitd
Cisopen
i(¥)=0
v(¥) =12V




8.3 Finding I nitial VValues

n Example 2

Find: (a) i, (0"), gtiL(O*) 1 (¥)

OV Se(0) %)

© VR0, S0 i)

8.3 Finding I nitial VValues
n Example 2 (cont.)




8.3 Finding I nitial VValues

n Example 2 (cont.)

i, (0") =i (0)=0
v.(0") =v,(0") =-20v

8.3 Finding I nitial VValues
n Example 2 (cont.)

. 4
i,,(07) =3A" —— =2A
w(0") "
Vo (0")=2A" 2=aV

L (0)=3A —2_=1A
2+4




8.3 Finding I nitial VValues

n Example 2 (cont.)

FromKVL: -vg+v,+v.+20=0
Take derivative
V R(t) = V t+ V (t)

v(0) =2y 0 )+iv (0" LL(A)

8.3 Finding I nitial VValues

n Example 2 (cont.)

Also, fromKCL: 3A= VR_Z(t) + Voit)
Take derivative

0=2 S w0 +5 SV OLLB)




8.3 Finding I nitial VValues

n Example 2 (cont.)

From (B) %vo(ov =. Z%VR(W)LL(C)

From (A) and (C)
d

dy R(o+):-2d—vR<o+)+2
R<o )—— YA

d

8.3 Finding I nitial VValues

n Example 2 (cont.)

: 2
IL(¥)=3A" —=1A
(¥)=3A =

V. (¥)=-20v
Vg(¥) =3A" (2WP 4W) = 4V




8.4 The Natural Response of a Series/Parallel
RL C Circuit

(@) The source-free series RLC circuit

This section is an important background for studying
filter design and communication networks .

initial conditions

11(0) =1,
%V(O) =V,

8.4 The Natural Response of a Series/Parallel
RL C Circuit

R L initial conditions
Iy + .
1 11(0) =1
iVv(0) =V,

Sepl: Mesh analysis

T I
R+L—+—- idt=0
a cO

Todiminatetheintegral ,take derivative

2. -
d_2|+ Rﬂ+£i =0
dt da C




8.4 The Natural Response of a Series/Parallel
RLC Circuit

R L initial conditions
Iy + .
‘ i1(0) =1
@ YOTC |' ( ) 0
v(0) =V,

Sep 2: Homogeneous solution , characteristic equation

SZ+BS+i:O
L LC

S*+20S+w,’=0 P a@z—Ff_,a)oz@

1
Lc
w, -undamped resonant frequency (rad/s)
o :damping factor or neper frequency

C.T. Pan

8.4 The Natural Response of a Series/Parallel
RL C Circuit

R L initial conditions
Iy + .
1 11(0) =1
@ YQTC :, ( ) 0
Tv(0) =V,
characteristicroots (natural frequencies)
S =-a+4a’-w,
S = -a-\o’-w,
i(t)=Ae™ +Ae™
Need twoinitial conditions,i.e.,i(0") and gi(@) :
[




8.4 The Natural Response of a Series/Parallel
RLC Circuit

Casel Overdamped Case (a >w,)
Two real roots

i(t)= Ae™ + Ae™
Case?2 Critically Damping Case (a=w,)
Equal real roots

i(t)=(A+At)e™

C.T. Pan

8.4 The Natural Response of a Series/Parallel
RL C Circuit

Case3 Underdamped Case (a <w,)

Complex conjugate roots

SA =-a+ de

Sz =-a- de

w, @ w,*-a’ damping frequency

i(t) =e® (B, cosw,t + B, sinw,t)
Oncei(t) isobtained ,solutionsof other variablescan be
obtained fromthismesh current.




8.4 The Natural Response of a Series/Parallel
RL C Circuit

The damping effect is due to the presence of resistance R .

The damping factor o determines the rate at which the
response is damped .

If R=0, the circuit is said to be lossless and the
oscillatory response will continue .

The damped oscillation exhibited by the underdamped
response is known as ringing . It stems from the ability of
the L and C to transfer energy back and forth between
them .

C.T. Pan

8.4 The Natural Response of a Series/Parallel
RL C Circuit

Sep 3 : Initial Condition
t=0",i(0")=i(0)=1,
Frommesh equation ,lett =0"

ri)+LLi0)+ LS idt=0
d c O

d. R. V. R V
\' —i(0)=-—i(0")- 2=-—1,--2
dt( ) L( ) L L° L




8.4 The Natural Response of a Series/Parallel
RLC Circuit

or from equivalent circuit at t =0°

d. .
LE'(O ):VL:'(|0R+V0)

TR Vo
L L

d.
\ —i(0") =-
Olt()

8.4 The Natural Response of a Series/Parallel
RL C Circuit

(b) The source-free parallel RLC circuit

initial inductor current |
0
Iy initial capacitor voltage V,

Sep 1: Nodal Equation

Vilgwtrc=o
R'L o

Taking derivativeto eliminatetheintegral

d3v
—+




8.4 The Natural Response of a Series/Parallel
RLC Circuit

Sep 2 : Homogeneous solution
Characteristic equation

Sz+is+i:0
RC LC

1 1

S +2aS+w,” =0 Pa@—,w°0—

° ¢ 2RC ' ° ¢ LC
characteristic roots (natural frequencies)

S=-a+a*-w/’

S =-a-,a?’-

8.4 The Natural Response of a Series/Parallel
RL C Circuit

CASE 1. Overdamped Case (@>Wj)
v(t) = Ae¥ + Ae™

CASE 2. Critically Damped Case ( a=W)
v(t)=(A+At)e™

CASE 3. Underdamped Case (@ <wj)

v(t)=e* (A cosw,t+ A sinw,t)




8.4 The Natural Response of a Series/Parallel
RLC Circuit
Sep 3 : Initial Condition
v(0") =i(0) =V,
Fromnodal equation

8.4 The Natural Response of a Series/Parallel
RL C Circuit

or from equivalent circuit at t =0°

d oo
C VO =ic (0%)

d + _iC(0+)
‘a0

FromKCL, i.(0")=-1,- \%

Once the nodal voltage is obtained, any other unknown
of the circuit can be found .

C.T. Pan




8.5 The Step Response of a Series/Parallel RLC
Circuit

(a) Step response of a series
RLC circuit

Step 1. Mesh analysis(i=i, )

Lﬂ+Ri +£(‘jdt =V, ,t>0
dt C

Case(i) take derivative

Same as natural response but with i(07)=1,

8.5 The Step Response of a Series/Parallel RLC
Circuit

Case(ii) use v as unknown

v, (t) =%(AL+AZt)e'at critically damped
% e (Acosw,t+A sinw,t)  underdamped




8.5 The Step Response of a Series/Parallel RLC
Circuit
Step 3. Initia conditions

8.5 The Step Response of a Series/Parallel RLC
Circuit
(b) Step response of aparalel RLC circuit

ly, Vo Given

L
Step 1. Nodal equation

Vilswrc =1, >0
R L dt

Case (i) Take derivative
dv ladv 1 _
—+——+=v=0
dt> Rdt L

Same as natural response




8.5 The Step Response of a Series/Parallel RLC
Circuit

.. . 2. .
Case (ii) Let [T i S L P
dt dt© RCdt LC LC

Step 2. Complete solution = i (t)+i(t)
1 (t) =1,
i Ae™ +Ae™ overdamped
W (1) =1(A+At)e™ critically damped
% e (Acosw,t+Asinwt)  undererdamped

Step 3. Initial Condition

8.5 The Step Response of a Series/Parallel RLC
Circuit
n Example




8.5 The Step Response of a Series/Parallel RLC
Circuit
M ethod (a)

FromKCL b i=Y+1d (A)
2 2t

FromKVL b 4i+1%+v=12 (B)

Substitute (A) into (B)
2
(2v+ 2%)+(Eﬂ+ 1dv

>a o)V

2
p 4V.isd,6y=2av
dtz = dt

Characteristic equation
(s+2)(s+3)=0
S =- 2’ S, =- 3

8.5 The Step Response of a Series/Parallel RLC
Circuit
v, (1) =A€e*+A ™




8.5 The Step Response of a Series/Parallel RLC
Circuit
4+ A +A, =12
-2A,-3A,=-12
\ A, =12, A,=-4
v(t) =4+12e* - 4 t3 0

Method (b) Using Mesh Analysis

8.5 The Step Response of a Series/Parallel RLC
Circuit

d .. . .
1a+4| +(iy- 1,)2=12

1 &
120
di, . di
at Cdt

(i,- i) 2W+ it =0

From (B) , 2 +2i,=0

d . .
a+6|1- 2i,=12

LI P
dt ot




8.5 The Step Response of a Series/Parallel RLC
Circuit

In matrix form with operator D @%

eD+6| -2 uéu_d2u (©)
& 2D | 2D+2H8,H &oH
Initial Condition , i,(0") =i(0") =i(0") =0A
i,(0") =i_(0") = - 6A

iy (0") _v.(0") _
dt L

di,(0")

=0A/S

8.5 The Step Response of a Series/Parallel RLC
Circuit

Eliminatei, variable from (C)

. .
9 59,6 =12
dt dt
\ i (t)=2-6e*+4e¥,t3 0

Or diminatei, variable from (C)
d’i, +5%
dt>  dt
\ i (t)=-12e* +6€*,t2 0

+6i,=0




8.5 The Step Response of a Series/Parallel RLC
Circuit

Problem : (a) Time consuming to eliminate the other
variableto get a higher order differential
equation.

(b) It isalso necessary to obtain the desired
initial conditions.

(c) Asthe order gets higher when the
network contains more energy storage
elements, the process gets more
complicated.

The difficulty can be overcome by using state equation
formulation.

C.T. Pan

8.6 State Equation

When the differential equations of acircuit iswritten in
the following form:

X X%...X ] state vector
u U,...u.] inputvector
1 =[f, f,.f.]  vector function




8.6 State Equation

It is said that the circuit equations are in the state

equation form.

(@) Thisform lendsitself most easily to analog or digital
computer programming.

(b) The extension to nonlinear and/or time varying
networks is quite easy.

(¢) Inthisform, a number of theoretic concepts of

systems are readily applicable to networks.

C.T. Pan

8.6 State Equation

For alinear time-invarying circuit, asimpler form

%5:A>_<+ Bu , state equation

y =Cx+Du , output equation

> n" n matrix.
: n” mmatrix.
- 17 n matrix.
;1" m matrix.
Note that on the right hand side of the state or output

equation, only x and u are allowed.

C.T. Pan




8.6 State Equation

Stepl. Pick atree which contains all the capacitors and
none of inductors.

Step2. Use the tree-branch capacitor voltages and the
link inductor currents as unknown (i.e. , state)
variables.

Note: (a) Nodal Analysis
Every unknown of the circuit can be
calculated from nodal voltages.
(b) Mesh Analysis
Every unknown of the circuit can be
calculated from mesh currents.

8.6 State Equation

(c) Sate Equation

1 The chosen variables include both
voltage and current unknown. It belongs
to mixed type.

Every unknown of the circuit can be
calculated from the state variables by
replacing each inductor with a current
source and each capacitor with a voltage
source and then solving the resulting
resistive circuit.




8.6 State Equation

Step3. Write afundamental cutset equation (i.e. KCL
equation) for each capacitor.
Note that in these cutset equations, all branch
currents must be expressed in terms of x and u.
Step4. Write a fundamental loop equation (i.e. KVL
equation) for each inductor.
Note that in these loop equations, all branch
voltages must be expressed in terms of x and u.
Step5. Rearrange the above equations into standard form
and find the solution for the given initial condition.

8.6 State Equation
nExample 1




8.6 State Equation

Step2 choose i and v as state variables,
Step3 fundamental cutset about the capacitor tree branch.

Step4 fundamental loop for the inductor link.

Lﬂ +v-12V +4i =0
dt

8.6 State Equation

with initial condition v(0*) = 12V
C.T. Pan | (0+) = OA



8.6 State Equation

=-5x, - 4X, - 3x; + u(t)

8.6 State Equation

State space representation

exlu €0 1 Ouexu €0

ex U_€5 o 108 U, &0,y

201 é Uué™2a é-u

@XSH g3 -4 '59@(39 el
y=[1 0 0]ex +[0]u(t)
exsf

A high order differential equation can be represented
in the form of state equation.

C.T. Pan




8.6 State Equation
n Example 3: Find vg,

There are 8 nodes.

63

8.6 State Equation
Stepl Pick atree asfollows:

There are 7 tree branches
and 3 links.




8.6 State Equation

Step2 Choosei 4, 15 » Vey » Ve @S UNKNOWNS.
Step3 Fundamental cutsets (KCL) for capacitors.

D It

R4

+
VR4

Absorb voltages vy,
and v, in current
sourcei 4 ,

and v, ini,.

Absorb voltages v,
and Vs In (i1t ;o)
current source.




8.6 State Equation

C.T. Pan

8.6 State Equation
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8.6 State Equation

Special case

Inductor current i5 is dependent on i, and i, and
Isno longer a state variable.

One can choose only n-1 (here 2) inductor
currents as state variables.

8.6 State Equation

From KVL
Ve1tVez2 = Ves

One can choose n-1 (here 2) capacitor
voltages as state variables.




Summary.

Objective 1 : Be able to find the initial values and the
initial derivative values.

Objective 2 : Be able to determine the natural response
and the step response of a series RLC circuit.

Objective 3 : Be able to determine the natural response
and the step response of aparallel RLC circuit.

Objective 4 : Be able to obtain the state equation and
output equation of alinear circuit.

Summanry.

Chapter Problems: 8.16
8.25
8.32
8.40
8.44

Due within one week.




