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NATURAL AND NATURAL AND 
STEP RESPONSES STEP RESPONSES 
OF RLC CIRCUITSOF RLC CIRCUITS
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8.1 Linear Second Order Circuits8.1 Linear Second Order Circuits

nn Circuits containing two energy storage elements.Circuits containing two energy storage elements.
nn Described by differential equations that contain Described by differential equations that contain 

second order derivatives.second order derivatives.
nn Need two initial conditions to get the unique Need two initial conditions to get the unique 

solution.solution.
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n Examples
8.1 Linear Second Order Circuits8.1 Linear Second Order Circuits

(a) RLC parallel circuit

(b) RLC series circuit

( )i t( )sv t

( )v t
+

−

( )si t
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8.1 Linear Second Order Circuits8.1 Linear Second Order Circuits
(c) 2L+R , RL circuit

( )sv t

1R 2R

1L 2L

(d) 2C+R , RC circuit R

C2C1( )si t
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8.2 Solution Steps8.2 Solution Steps
Step1 : Choose nodal analysis or mesh Step1 : Choose nodal analysis or mesh 

analysis analysis approachapproach
Step2 : Differentiate the equation as many Step2 : Differentiate the equation as many 

times as required to get the standard times as required to get the standard 
form of a second order differential form of a second order differential 
equation .equation .

2

2 ( )d x dxa b x y t
dt dt

+ + =
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Step 3 : Solving the differential equationStep 3 : Solving the differential equation
(1) homogeneous solution (1) homogeneous solution 
(2) particular solution(2) particular solution

8.2 Solution Steps8.2 Solution Steps

( )hx t
( )px t

( ) ( ) ( )h px t x t x t= +

Step 4 : Find the initial conditionsStep 4 : Find the initial conditions
and              and              andand then get the then get the 

unique solution unique solution 
(0 )x + (0 )d x

dt
+

88C.T. PanC.T. Pan 88

8.3 Finding Initial Values8.3 Finding Initial Values
Under DC steady state, L is like a short circuit Under DC steady state, L is like a short circuit 
and C is like an open circuit.and C is like an open circuit.
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8.3 Finding Initial Values8.3 Finding Initial Values
Under transient condition, L is like an open circuit Under transient condition, L is like an open circuit 
and C is like a short circuit because and C is like a short circuit because iiLL(t(t) and ) and vvCC(t(t) ) 
are continuous functions if the input is  bounded.are continuous functions if the input is  bounded.
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8.3 Finding Initial Values8.3 Finding Initial Values
Under transient condition, L is like an open circuit Under transient condition, L is like an open circuit 
and C is like a short circuit because and C is like a short circuit because iiLL(t(t) and ) and vvCC(t(t) ) 
are continuous functions if the input is  bounded.are continuous functions if the input is  bounded.
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8.3 Finding Initial Values8.3 Finding Initial Values
(0 )(0 )     ,    

 
(0 ) (0 )       (0 ) (0 )

(0 ) (0 ) (0 )       (0 )

CL

L L
L L

C C C
c

+ +
L C

dvdiTo find and use the
dt dt

following relations
di vdL v i

dt dt L
dv dv iC i

dt dt C
One can find v (0 ) and i (0 )  using either 
nodal or

++

+ +
+ +

+ + +
+

= => =

= => =

. mesh analysis 
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8.3 Finding Initial Values8.3 Finding Initial Values
nn Example 1Example 1

     .
     0

:  ( ) (0 ) ,  (0 )

            ( ) (0 ) ,  (0 )

            ( ) ( ) ,  ( )

The circuit is under steady state
The switch is opened at t

dFind a i i
dt
db v v
dt

c i v

+ +

+ +

=

∞ ∞
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8.3 Finding Initial Values8.3 Finding Initial Values
nn Example 1 (cont.)Example 1 (cont.)

t < 0t < 0

i(0-) = 2 A

v(0-) = 4 V

∴∴ i(0i(0++) =  i(0) =  i(0--) = 2 A) = 2 A

v(0v(0++) = v(0) = v(0--) = 4 V) = 4 V
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8.3 Finding Initial Values8.3 Finding Initial Values
nn Example 1 (cont.)Example 1 (cont.)

t = 0t = 0++

(0 )  , (0 )

(0 )   , (0 )

L
L

C
C

Vdi dL V i
dt dt L

idv dC i v
dt dt C

+
+

+
+

= ∴ =

= ∴ =

Q

Q



1515C.T. PanC.T. Pan 1515

8.3 Finding Initial Values8.3 Finding Initial Values
nn Example 1 (cont.)Example 1 (cont.)

:  2A 4  (0 ) + 4V = 12V

           (0 ) 0

          (0 ) 0

:  (0 ) = 2A

          (0 ) 0

(0 ) 2          20  V/S
0.1

L

L

C

C

KVL v
v
d i
dt

KCL i
d v
dt
i

C

+

+

+

+

+

+

× +

∴ =

∴ =

∴ =

∴ = =
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8.3 Finding Initial Values8.3 Finding Initial Values
nn Example 1 (cont.)Example 1 (cont.)

4Ω

2Ω

0.25H

0.1F
+
v
-

12V
t=0

i

( ) 0
   ( ) 12V

L is short circuitd
C is open 

i
v

∴ ∞ =
∞ =

t → ∞
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8.3 Finding Initial Values8.3 Finding Initial Values
nn Example 2Example 2

4Ω

3u(t)A 0.6H
1__
2 F

+
vc-

20V

+
vR-

2Ω
iL

L L:  ( ) (0 ) ,  (0 ) , ( )

            ( ) (0 ) ,  (0 ) ,  ( )

            ( ) (0 ) ,  (0 ) ,  ( )

L

C C C

R R R

dFind a i i i
dt
db v v v
dt
dc v v v
dt

+ +

+ +

+ +

∞

∞

∞
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8.3 Finding Initial Values8.3 Finding Initial Values
nn Example 2 (cont.)Example 2 (cont.)

4Ω

3u(t)A 0.6H
1__
2 F

+
vc-

20V

+
vR-

2Ω
iL

4Ω
+
vc-

20V

+
vR-

2Ω
iL

(0 ) 0

  (0 ) 20

  (0 ) 0

L

c

R

i
v V
v

−

−

−

∴ =

= −

=

t < 0t < 0
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8.3 Finding Initial Values8.3 Finding Initial Values
nn Example 2 (cont.)Example 2 (cont.)

4Ω

3u(t)A 0.6H
1__
2 F

+
vc-

20V

+
vR-

2Ω
iL t = 0t = 0++

(0 ) (0 ) 0

  (0 ) (0 ) 20
L L

c c

i i
v v V

+ −

+ −

∴ = =

= = −
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8.3 Finding Initial Values8.3 Finding Initial Values
nn Example 2 (cont.)Example 2 (cont.)

4Ω

3u(t)A 0.6H
1__
2 F

+
vc-

20V

+
vR-

2Ω
iL

t = 0t = 0++

3A

4Ω

2Ω
ic(0+)+

vR(0+)
-

+  vo (0+) -

2
4(0 ) 3 2

2 4
(0 ) 2 2 4

2(0 ) 3 1
2 4

(0 ) 0(0 ) 0

(0 ) 1  (0 ) 2  1
2

  (0 ) ?

R

c

L
L

c
c

R

i A A

v A V

i A A

vd i
dt L L

id Vv Sdt c
d v
dt

+
Ω

+

+

+
+

+
+

+

= × =
+

= × =

= × =
+

∴ = = =

= = =

=



2121C.T. PanC.T. Pan 2121

8.3 Finding Initial Values8.3 Finding Initial Values
nn Example 2 (cont.)Example 2 (cont.)

4Ω

3u(t)A 0.6H
1__
2 F

+
vc-

20V

+
vR-

2Ω
iL t > 0t > 0++

3A

4Ω

1__
2 F

+
vc
-

20V

2Ω

iL
+
vR
- 0.6H

+    vo -

 :   20 0
 

                     ( ) ( ) ( )

                 (0 ) (0 ) (0 ) ( )

R o c

R o c

R o c

From KVL v v v
Take derivative

d d dv t v t v t
dt dt dt
d d dv v v A
dt dt dt

+ + +

− + + + =

= +

∴ = + LL
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8.3 Finding Initial Values8.3 Finding Initial Values
nn Example 2 (cont.)Example 2 (cont.)

4Ω

3u(t)A 0.6H
1__
2 F

+
vc-

20V

+
vR-

2Ω
iL t > 0t > 0++

3A

4Ω

1__
2 F

+
vc
-

20V

2Ω

iL
+
vR
- 0.6H

+    vo -

( )( ) ,   :   3
2 4

 
1 1                     0 ( ) ( ) ( )
2 4

oR

R o

v tv tAlso from KCL A
Take derivative

d dv t v t B
dt dt

= +

= + LL



2323C.T. PanC.T. Pan 2323

8.3 Finding Initial Values8.3 Finding Initial Values
nn Example 2 (cont.)Example 2 (cont.)

  ( )    (0 ) 2 (0 ) ( )

  ( )   ( )   

                     (0 ) 2 (0 ) 2

2 V                  (0 )  S3

o R

R R

R

d dFrom B v v C
dt dt

From A and C
d dv v
dt dt
d v
dt

+ +

+ +

+

= −

= − +

∴ =

LL
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8.3 Finding Initial Values8.3 Finding Initial Values
nn Example 2 (cont.)Example 2 (cont.)

4Ω

3u(t)A 0.6H
1__
2 F

+
vc-

20V

+
vR-

2Ω
iL t t →∞→∞

3A

4Ω

20V

2Ω

iL
+

vR( )
-

+
vc( )

-

2( ) 3 1
2 4

   ( ) 20
   ( ) 3 (2 4 ) 4

L

c

R

i A A

v V
v A V

∴ ∞ = × =
+

∞ = −
∞ = × Ω Ω =P
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(a) (a) The sourceThe source--free series RLC circuitfree series RLC circuit

This section is an important background for studying This section is an important background for studying 
filter design and communication networks .  filter design and communication networks .  

0

0

 
(0)

   
(0)

initial conditions
i I
v V

=
 =

8.4 The Natural Response of a Series/Parallel 8.4 The Natural Response of a Series/Parallel 
RLC CircuitRLC Circuit
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0

0

 
(0)

   
(0)

initial conditions
i I
v V

=
 =

2

2

 1 :    
1                   0

1                  0

t

Step Mesh analysis
diRi L i dt
dt C

              To eliminate the integral , take derivative
d i diL R i
dt dt C

−∞
+ + =

+ + =

∫

8.4 The Natural Response of a Series/Parallel 8.4 The Natural Response of a Series/Parallel 
RLC CircuitRLC Circuit
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0

0

 
(0)

   
(0)

initial conditions
i I
v V

=
 =

:  

             

             

:

2

2 2 2
0 0

0

Step 2  Homogeneous solution , characteristic equation
R 1S + S + = 0
L LC

R 1S +2αS +ω = 0        α  , ω
2L LC

               ω   undamped resonant  frequency  (rad/s)
              

⇒ @ @

: α   damping factor or neper frequency 

8.4 The Natural Response of a Series/Parallel 8.4 The Natural Response of a Series/Parallel 
RLC CircuitRLC Circuit

2828C.T. PanC.T. Pan 2828

0

0

 
(0)

   
(0)

initial conditions
i I
v V

=
 =

( ) 1 2
1 2

   

   

(0 )  (0 ) .

2 2
1 0

2 2
2 0

S t S t

characteristic roots   (natural frequencies)
S = -α+ α -ω

S = -α - α -ω
i t A e A e

dNeed two initial conditions , i.e. , i and i
di

+ +

∴ = +

8.4 The Natural Response of a Series/Parallel 8.4 The Natural Response of a Series/Parallel 
RLC CircuitRLC Circuit
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( ) 1 2

0

1 2

0

1 2

 ( )
   

               
 ( = )

   

                
2

         

S t S t

Case 1  Overdamped Case >
            Two real roots

i t A e A e
Case 2  Critically Damping Case 
             Equal real roots

RS S
L

α ω

α ω

α

= +

= = − = −

( ) ( )2 1       ti t A At e α−= +

8.4 The Natural Response of a Series/Parallel 8.4 The Natural Response of a Series/Parallel 
RLC CircuitRLC Circuit
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( )

0

1

2

2 2
0

1 2

 ( )
   

               
               

                      

               cos si

d

d

d

t
d

Case 3  Underdamped Case <
            Complex conjugate roots

S j
S j

damping frequency

i t e B t Bα

α ω

α ω
α ω

ω ω α

ω−

= − +
= − −

−

= +

@

( )n dt
Once i(t) is obtained ,solutions of  other variables can be 
obtained from this mesh current.

ω

8.4 The Natural Response of a Series/Parallel 8.4 The Natural Response of a Series/Parallel 
RLC CircuitRLC Circuit
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nn The damping effect is due to the presence of resistance R .The damping effect is due to the presence of resistance R .

nn The damping factor The damping factor αα determines the rate at which the determines the rate at which the 
response is damped .response is damped .

nn If  R=0 , the circuit is said to be lossless and the If  R=0 , the circuit is said to be lossless and the 
oscillatory response will continue .oscillatory response will continue .

nn The damped oscillation exhibited by the The damped oscillation exhibited by the underdampedunderdamped
response is known as ringing . It stems from the ability of response is known as ringing . It stems from the ability of 
the L and C to transfer energy back and forth between the L and C to transfer energy back and forth between 
them .them .

8.4 The Natural Response of a Series/Parallel 8.4 The Natural Response of a Series/Parallel 
RLC CircuitRLC Circuit
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0

0

0

 3 :    
                  0 ,  (0 ) (0 )

0
1                  (0 ) (0 ) 0

                   (0 ) (0 )

Step Initial Condition
t i i I

              From mesh equation , let t
dRi L i idt
dt C

Vd R Ri i
dt L L L

+

+ + −

+

+ +

−∞

+ +

= = =

=

+ + =

∴ = − − = −

∫
0

0
VI
L

−

8.4 The Natural Response of a Series/Parallel 8.4 The Natural Response of a Series/Parallel 
RLC CircuitRLC Circuit
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0 0

0 0

     0

    (0 ) ( )

   (0 )

L

or from equivalent circuit at t
dL i v I R V
dt

I R Vd i
dt L L

+

+

+

=

= = − +

∴ = − −

vL V0

i

R

I0

8.4 The Natural Response of a Series/Parallel 8.4 The Natural Response of a Series/Parallel 
RLC CircuitRLC Circuit
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(b) (b) The sourceThe source--free parallel RLC circuitfree parallel RLC circuit

initial inductor current Io

initial capacitor voltage Vo

2

2

 :
1               0

1 1               0

t

Step 1  Nodal Equation
v dvvdt C
R L dt

            Taking derivative to eliminate the integral 
d v dv v
dt RC dt LC

+ + =

+ + =

∫

8.4 The Natural Response of a Series/Parallel 8.4 The Natural Response of a Series/Parallel 
RLC CircuitRLC Circuit
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2

2 2 2
0 0

 :  

1 1                 0
1 1                 2 0         , 

2
                    (

Step 2  Homogeneous solution
                 Characteristic equation

S S
RC LC

S S
RC LC

characteristic roots natura

α ω α ω

+ + =

+ + = ⇒ @ @

2 2
1 0

2 2
2 0

 )

                   

                   

l frequencies
S

S

α α ω

α α ω

= − + −

= − − −

8.4 The Natural Response of a Series/Parallel 8.4 The Natural Response of a Series/Parallel 
RLC CircuitRLC Circuit
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8.4 The Natural Response of a Series/Parallel 8.4 The Natural Response of a Series/Parallel 
RLC CircuitRLC Circuit

CASE 1. CASE 1. OverdampedOverdamped Case (Case (αα>w>w0 0 ))

CASE 2. Critically Damped Case (CASE 2. Critically Damped Case (αα=w=w0 0 ))

CASE 3. CASE 3. UnderdampedUnderdamped Case (Case (αα<w<w0 0 ))

( ) 1 2
1 2

S t S tv t A e A e= +

( ) ( )1 2
tv t A A t e α−= +

( ) ( )1 2cos sint
d dv t e A w t A w tα−= +
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( ) ( )

( ) ( )

0

0

0

 3 :    
                  (0 ) (0 )

0 1                 0 0

0 1                 0

                       

Step Initial Condition
v i V

              From nodal equation 

v dvdt C v
R L dt

vdC v vdt
dt R L

+

+

+ −

+
+

−∞

+
+

−∞

= =

+ + =

∴ = − −

∫

∫

( )

0
0

0 0

               

                 0

V I
R

V Id v
dt RC C

+

= − −

∴ = − −

8.4 The Natural Response of a Series/Parallel 8.4 The Natural Response of a Series/Parallel 
RLC CircuitRLC Circuit
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( )

0
0

     0

    (0 ) 0

(0 )   (0 )

     ,  (0 )

C

C

C

or from equivalent circuit at t
dC v i
dt

id v
dt C

VFrom KCL i I
R

+

+ +

+
+

+

=

=

∴ =

= − −

Once the nodal voltage is obtained, any other unknown Once the nodal voltage is obtained, any other unknown 
of the circuit can be found .of the circuit can be found .

8.4 The Natural Response of a Series/Parallel 8.4 The Natural Response of a Series/Parallel 
RLC CircuitRLC Circuit



1   , 0s
diL Ri idt V t
dt C

+ + = >∫

2

2 0d i di iL R
dt dt C

+ + =

( ) 0 00 sV I R Vd i
dt L

+ − −
=

Step 1. Mesh analysis (i=iL )

Case(i) take derivative

Same as natural response but with  i(0+)=I0

3939C.T. PanC.T. Pan

(a) Step response of a series

RLC circuit 

8.5 The Step Response of a Series/Parallel RLC   8.5 The Step Response of a Series/Parallel RLC   
CircuitCircuit

Case(ii) use v as unknown
dvi C
dt

=

2

2
sVd v R dv v

dt L dt LC LC
+ + =

Step 2. Complete solution = vh+vp

( )

( ) ( )
( )

1 2
1 2

1 2

1 2

                            

                            

cos sin      

p s

S t S t

t
h

t
d d

v t V

A e A e overdamped
v t A A t e critically damped

e A w t A w t underdamped

α

α

−

−

=

 +


= +
 +
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8.5 The Step Response of a Series/Parallel RLC   8.5 The Step Response of a Series/Parallel RLC   
CircuitCircuit



Step 3. Initial conditions

( ) ( )
( )

00 0

     0 ?

     C

v v V

d v
dt

dvC i
dt

+ −

+

= =

=

=

( ) ( ) 0
0

0 Ci Id v
dt C C

+
+∴ = =
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Then the unique solution can be determined

8.5 The Step Response of a Series/Parallel RLC   8.5 The Step Response of a Series/Parallel RLC   
CircuitCircuit

1   , 0
t

s
v dvvdt C I t
R L dt

+ + = >∫

I0 , V0  Given

Step 1. Nodal equation

Case (i) Take derivative
2

2

1 1 0d v dvC v
dt R dt L

+ + =

Same as natural response C.T. PanC.T. Pan 4242

(b) Step response of a parallel RLC circuit

8.5 The Step Response of a Series/Parallel RLC   8.5 The Step Response of a Series/Parallel RLC   
CircuitCircuit



Case (ii) Let

Step 2. Complete solution = ih(t)+ip(t)

2

2

1 1    , 0sIdi d i div L i t
dt dt RC dt LC LC

= ⇒ + + = >

( )

( ) ( )
( )

1 2
1 2

1 2

1 2

                            

                           

cos sin      

p s

S t S t

t
h

t
d d

i t I

A e A e overdamped
i t A A t e critically damped

e A w t A w t undererdamped

α

α

−

−

=

 +


= +
 +

Step 3. Initial Condition
( ) ( )

( )
0

0

0 0

(0 )0 L
L

i i I

Vvdi dL v i
dt dt L L

+ −

+
+

= =

= ⇒ = =C.T. PanC.T. Pan 4343

8.5 The Step Response of a Series/Parallel RLC   8.5 The Step Response of a Series/Parallel RLC   
CircuitCircuit

nn ExampleExample

1 F
2

- -0 ,  (0 ) = 0 , (0 ) = 12Vt i v<

1 F
2

t > 0
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8.5 The Step Response of a Series/Parallel RLC   8.5 The Step Response of a Series/Parallel RLC   
CircuitCircuit



Method (a)
1From KCL                 (A)

2 2

From KVL 4 1 12          (B)

v dvi
dt

dii v
dt

⇒ = +

⇒ + + =

2

2

2

2

Substitute (A) into (B)
1 1     (2 2 )+( + )+ 12
2 2

5 6 24V

dv dv d vv + v =
dt dt dt

d v dv v
dt dt

⇒ + + =

1 2

  
      ( 2)( 3) 0
       2, 3

Characteristic equation
s s
s s

+ + =
= − = − 4545C.T. PanC.T. Pan

8.5 The Step Response of a Series/Parallel RLC   8.5 The Step Response of a Series/Parallel RLC   
CircuitCircuit

2 3
1 2

2 3
1 2

( ) A A
24( ) 4V
6

( ) 4 A A

t t
h

p

t t

v t e e

v t

v t e e

− −

− −

= +

= =

∴ = + +
+ -Initial  Condition  (0 )= (0 )=12Vv v

1 F
2

+t=0

(0 )(0 ) 6 12 V / S
1/ 2

c

c

dvC i
dt

idv
dt C

++

=

−
∴ = = = − 4646C.T. PanC.T. Pan

8.5 The Step Response of a Series/Parallel RLC   8.5 The Step Response of a Series/Parallel RLC   
CircuitCircuit



1 2

1 2

1 2
2 3

4 A A 12
2A 3A 12

    A 12,   A 4

( ) 4 12 4 , 0t tv t e e t− −

∴ + + =
− − = −

∴ = = −

∴ = + − ≥

Method (b)  Using Mesh Analysis

t>0
i

v

4Ω

12V

1H

2Ω 1 F
2

i1 i2
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8.5 The Step Response of a Series/Parallel RLC   8.5 The Step Response of a Series/Parallel RLC   
CircuitCircuit

1 2

2 1 2

2 1
2

1 2

1 2
2

1 4 ( )2 12          ......(A)

1( ) 2 0  ......(B)
1/ 2

From (B) , 2 2 2 0

6 2 12

2 2 2 0

t

di i i i
dt

i i i dt

di di i
dt dt

di i i
dt

di di i
dt dt

+ + − =

− × Ω + =

− + =

+ − =

− + + =

∫
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2



     dIn matrix form with operator D
dt

@

1

2

6 2 12
          (C)

2 2 2 0
iD
iD D

+ −     
=    − +    

1

2

1

2

Initial Condition , (0 ) (0 ) (0 ) 0A

(0 ) (0 ) 6A

(0 ) (0 )    0

(0 )    0 /

c

L

i i i
     i i

di v
dt L

di A S
dt

+ + −

+ +

+ +

+

= = =

= = −

= =

=
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2
1 1

12

2 3
1

2
2 2

22

2 3
2

Eliminate  variable from  (C)

5 6 12

( ) 2 6 4 , 0
Or eliminate  variable from  (C)

5 6 0

( ) 12 6 , 0

2

t t

1

t t

i
d i di i
dt dt

i t e e t
i

d i di i
dt dt

i t e e t

− −

− −

+ + =

∴ = − + ≥

+ + =

∴ = − + ≥
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Problem : (a) Time consuming to eliminate the other  
variable to get a higher order differential 
equation.

(b) It is also necessary to obtain the desired 
initial conditions.

(c) As the order gets higher when the 
network contains more energy storage
elements, the process gets more 
complicated. 
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The difficulty can be overcome by using state equation
formulation.
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When the differential equations of a circuit is written in 
the following form:

1 2

1 2

1 2

( , , )

[  .... ]     state vector

[  .... ]     input vector

[   .. ]      vector function

T
n

T
m

T
n

d x f x u t
dt
x x x x

u u u u
f f f f

=

=

=

=
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It is said that the circuit equations are in the state 

equation form.

(a) This form lends itself most easily to analog or digital 

computer programming.

(b) The extension to nonlinear and/or time varying 

networks is quite easy. 

(c) In this form, a number of theoretic concepts of 

systems are readily applicable to networks.
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For a linear time-invarying circuit ,  a simpler form

A B  ,  state equation

    y C D   ,  output equation

A :  n n  matrix.
B :  n m matrix.
C :  n   matrix.
D :  m   matrix.

d x x u
dt

x u

l
l

= +

= +

×
×
×
×

Note that on the right hand side of the state or output 

equation, only x and u are allowed.  
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Step1. Pick a tree which contains all the capacitors and 
none of inductors.

Step2. Use the tree-branch capacitor voltages and the 
link inductor currents as unknown (i.e. , state) 
variables.
Note: (a) Nodal Analysis 

Every unknown of the circuit can be 
calculated from nodal voltages.

(b) Mesh Analysis
Every unknown of the circuit can be 
calculated from mesh currents.
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(c) State Equation 

l The chosen variables include both 
voltage and current unknown. It belongs 
to mixed type.

l Every unknown of the circuit can be 
calculated from the state variables by 
replacing each inductor with a current 
source and each capacitor with a voltage 
source and then solving the resulting 
resistive circuit.  
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Step3. Write a fundamental cutset equation (i.e. KCL 
equation) for each capacitor.
Note that in these cutset equations, all branch   
currents must be expressed in terms of x and u. 

Step4. Write a fundamental loop equation (i.e. KVL 
equation) for each inductor.
Note that in these loop equations, all branch        
voltages must be expressed in terms of x and u. 

Step5. Rearrange the above equations into standard form 
and find the solution for the given initial condition.
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nExample 1

Step1 tree

5858C.T. PanC.T. Pan

8.6 State Equation8.6 State Equation



Step2 choose i and v as state variables.
Step3 fundamental cutset about the capacitor tree branch.

dC  =  - 
dt 2
v vi

Step4 fundamental loop for the inductor link.

dL  +  -12V +4  = 0
dt

i v i
5959C.T. PanC.T. Pan
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Step5

The desired solutions are v and i

with initial condition

1 -1 0
d C 2C = +  (12V)1-4 -1dt

LL L

v v
i i

                       

1 0 0
y =  = +  (12V)

0 1 0
v v
i i

       
       
       

+

+

(0 ) = 12V

 (0 ) = 0A

v
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nExample 2
3 2

3 2

1
2

1

2
2 3

2 3
3

3 3 3

2

2

d d d+ 5 + 4 + 3 = u(t)
dtdt dt

dx = xx  = (t) dt
dxd (t)Let  x =        = x              

dt dt
dxd (t) dx = =
dtdt dt

d d                                               = - 5 - 4 - 3 + u
dtdt

v v v v

v
v

v v

v v v

 
 
 
 ⇒ 
 
 
  

3 2 1

(t)

                                               = - 5x - 4x - 3x + u(t) 6161C.T. PanC.T. Pan
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State space representation

[ ] [ ]

1 1

2 2

3 3

1

2

3

x 0 1 0 x 0
d x = 0 0 1 x + 0 u(t)
dt

x -3 -4 -5 x 1

x
            y = 1 0 0 x + 0 u(t)

x

      
      ∴       
            

 
 
 
  

A high order differential equation can be represented 
in the form of state equation.
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n Example 3 :  Find vR4

es

R3

i3

R1 R2 R4

L1 L2

R5

C1

C2

iL1 iL2

i4

-
vC1

+

-
vC2

+

a

b

c

d

e

f

h
g

There are 8 nodes.
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Step1 Pick a tree as follows :

iL1 iL2

a

b

c d

e

f

g h

+
-vC1 +

-
vC2

There are 7 tree branches 
and 3 links.
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Step2 Choose iL1, iL2 , vC1 , vC2 as unknowns.
Step3 Fundamental cutsets (KCL) for capacitors.

C1
1 L1

C2
2 L1 L2

dC = 
dt

dC = 
dt

v i

v i +i

Step4 Fundamental loops (KVL) for inductors.
L1

1 R1 C1 C2 R5 R4

1 L1 C1 C2 5 L1 L2 R4

dL = - - - -  + 
dt

          = -R - - - R ( )

i v v v v v

i v v i i v+ +

Note that vR4 should be expressed in terms of x and u
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Absorb voltages vC2
and vR5 in (iL1+ iL2) 
current source.

Absorb voltages vR1
and vC1 in current 
source iL1 , 
and vR2 in iL2. 

6666
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3 44
R4 s L1 L2

3 4 3 4

R RR= e   - (  + )
R +R R +R

v i i∴
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Step5

1

C1 C1

2 2C2 C2 4
s

1L1 L11 2 3 4

1 1 1 1L2 L2

22

2 2 2

10 0 0
C 0
1 1 00 0

C C 1 Rd  =   +  e
L(R R )1 1 Rdt R +R

L L L L 1
L(R R)1 R0

L L L

v v
v v
i i
i i

 
                            − +− − −               − +− −   
 

C1

C23 4 3 4 4
R4 s

L13 4 3 4 3 4

L2

-R R -R R R = 0 0   + e
R R R R R R

v
v

v
i
i

 
       + + +   
 

3 4
5

3 4

R Rwhere   R  R  + 
R +R
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Special case

i1 i3

i2

From KCL 
i1+i2+i3 = 0 

∴ i3 = -i1-i2

(a)

Inductor current i3 is dependent on i1 and i2 and 
is no longer a state variable.

One can choose only n-1 (here 2) inductor 
currents as state variables.
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(b)

From KVL 
vC1+vC2 = vC3

One can choose n-1 (here 2) capacitor 
voltages as state variables.
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n Objective 1 : Be able to find the initial values and the  
initial derivative values.  

n Objective 2 : Be able to determine the natural response 
and the step response of a series RLC circuit.

n Objective 3 : Be able to determine the natural response 
and the step response of a parallel RLC circuit.

n Objective 4 : Be able to obtain the state equation and  
output equation of a linear circuit.
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SummarySummary

Chapter Problems : 8.16
8.25
8.32
8.40
8.44

Due within one week.


