

Introduction to

AutoCAD 2010

2D and 3D Design

Alf Yarwood

Newnes is an imprint of Elsevier
Linacre House, Jordan Hill, Oxford, OX2 8DP, UK
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
First edition 2009
Copyright © 2009 Alf Yarwood All rights reserved
The right of Alf Yarwood to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 198

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science \& Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865853333 ; email: permissions@elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made

British Library Cataloging in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress
ISBN: 978-1-85617-868-6

For information on all Newnes publications visit our website at books.elsevier.com

Typeset by Macmillan Publishing Solutions
(www.macmillansolutions.com)
Printed and bound by MKT, Slovenia
$0910 \quad 10987654321$

Working together to grow
 libraries in developing countries
 www.elsevier.com | www.bookaid.org \mid www.sabre.org

ELSEVIER
 Sabre Foundation

The purpose of writing this book is to produce a text suitable for students in Further and/or Higher Education who are required to learn how to use the CAD software package AutoCAD ${ }^{\circledR}$ 2010. Students taking examinations based on computer-aided design will find the contents of the book of great assistance. The book is also suitable for those in industry wishing to learn how to construct technical drawings with the aid of AutoCAD 2010 and those who, having used previous releases of AutoCAD, wish to update their skills to AutoCAD 2010.

The chapters in Part 1 - 2D Design, dealing with two-dimensional (2D) drawing, will also be suitable for those wishing to learn how to use AutoCAD LT 2010, the two-dimensional (2D) version of this latest release of AutoCAD.

Many readers using previous releases of AutoCAD will find the book's contents largely suitable for use with those versions, although AutoCAD 2010 has considerable enhancements over previous releases (some of which are mentioned in Chapter 21).

The contents of the book are basically a graded course of work, consisting of chapters giving explanations and examples of methods of constructions, followed by exercises which allow the reader to practise what has been learned in each chapter. The first 11 chapters are concerned with constructing technical drawings in two dimensions (2D). These are followed by chapters detailing the construction of three-dimensional (3D) solid drawings and rendering them. The two final chapters describe the Internet tools of AutoCAD 2010 and the place of AutoCAD in the design process. The book finishes with two appendices - a list of tools with their abbreviations and a list of some of the set variables upon which AutoCAD 2010 is based.

AutoCAD 2010 is a very complex computer-aided design (CAD) software package. A book of this size cannot possibly cover the complexities of all the methods for constructing 2D and 3D drawings available when working with AutoCAD 2010. However, it is hoped that by the time the reader has worked through the contents of the book, he/she will be sufficiently skilled with methods of producing drawings using the software to be able to go on to more advanced constructions and will have gained an interest in the more advanced possibilities available when using AutoCAD.

Alf Yarwood
Salisbury

Registered trademarks

Autodesk ${ }^{\circledR}$ and AutoCAD ${ }^{\circledR}$ are registered in the US Patent and Trademark Office by Autodesk Inc.
Autodesk Authorised Author

Windows ${ }^{\circledR}$ is a registered trademark of the Microsoft Corporation.
Alf Yarwood is an Autodesk authorised author and a member of the Autodesk Advanced Developer Network.

Part 1
 2D Design

Chapter 1 Introducing AutoCAD 2010

AIM OF THIS CHAPTER

The contents of this chapter are designed to introduce features of the AutoCAD 2010 window and methods of operating AutoCAD 2010.

Opening AutoCAD 2010

Fig. 1.1 The AutoCAD 2010 shortcut icon on the Windows desktop

AutoCAD 2010 is designed to work in a Windows operating system. In general, to open AutoCAD 2010, either left-click on the AutoCAD 2010 shortcut in the Windows desktop (Fig. 1.1). Depending on how details in Initial Setup... in the Options dialog (Fig. 1.20, page 16), the Initial Setup dialog (Fig. 1.2) may appear. This dialog is in three pages, two of which are shown in Fig. 1.2. The settings shown in Fig. 1.2 are for most of the 2D drawings in Part 1 of this book.

Fig. 1.2 Settings in Page 1 and Page 3 of the Initial Setup dialog
When working in education or in industry, computers may be configured to allow other methods of opening AutoCAD, such as a list appearing on the computer in use when the computer is switched on, from which the operator can select the program he/she wishes to use.

When AutoCAD 2010 is opened a window appears, which depending upon whether a 3D Modeling, Classic AutoCAD or a 2D Drafting \& Annotation workspace has been set as the QNEW in the Options dialog. In this example the 2D Drafting \& Annotation workspace is shown and includes the Ribbon with Tool panels (Fig. 1.3). This 2D Drafting \& Annotation workspace shows the following details:

- Ribbon: which includes tabs, each of which when clicked will bring a set of panels containing tool icons. Further tool panels can be seen by clicking the appropriate tab. The panels in the ribbon can be changed to previous AutoCAD releases using the Customer User Interface dialog if desired (see page 25).
- Menu Browser icon: A left-click on the arrow to the right of the A symbol at the top left-hand corner of the AutoCAD 2010 window causes the Menu Browser menu to appear (Fig. 1.4).

Fig. 1.3 The AutoCAD 2010 2D Drafting \& Annotation workspace

Fig. 1.4 The Menu Browser

- Workspaces Switching menu: appears with a click on the Workspace Switching button in the status bar (Fig. 1.5).
- Command palette: can be dragged from its position at the bottom of the AutoCAD window into the AutoCAD drawing area, when it can be seen to be a palette (Fig 1.6). As with all palettes, an AutoHide icon and a right-click menu is included:

Fig. 1.5 The Workspace Switching pop-up menu

Fig. 1.6 The command palette when dragged from its position as the bottom of the AutoCAD window

- Tool panels: each shows tools appropriate to the panel. Taking the Home/ Draw panel as an example, Fig. 1.7 shows that placing the mouse cursor on one of the tool icons in a panel brings a tooltip on screen showing details of how the tool can be used. Two types of tooltip will be seen. In the majority of future illustrations of tooltips, the smaller version will be shown. Other tools have pop-up menus appearing with a click. In the example given in Fig. 1.8, a click on the Circle tool icon will show a tooltip. A click on the arrow to the right of the tool icon brings a pop-up menu showing the construction method options available for the tool.
- Quick Access toolbar: The toolbar at the top right of the AutoCAD window holds several icons, one of which is the Open tool icon. A click on the icon opens the Select File dialog (Fig. 1.9).

Fig. 1.7 The descriptive tooltip appearing with a click on the Line tool icon

Fig. 1.8 The tooltip for the Circle tool and its pop-up menu

Fig. 1.9 The Open icon in the Quick Access toolbar brings the Select File dialog on screen

The mouse as a digitiser

Fig. 1.10 A two-button mouse

Many operators working in AutoCAD will use a two-button mouse as a digitiser. There are other digitisers which may be used - pucks with tablets, a three-button mouse etc. Fig. 1.10 shows a mouse which has two buttons, and a wheel.

To operate this mouse pressing the Pick button is a left-click. Pressing the Return button is a right-click. Pressing the Return button usually, but not always, has the same result as pressing the Enter key of the keyboard.

When the wheel is pressed drawings in the AutoCAD screen can be panned by moving the mouse. Moving the wheel forwards enlarges (zooms in) the drawing on screen. Move the wheel backwards and a drawing reduces in size.

The pick box at the intersection of the cursor hairs moves with the cursor hairs in response to movements of the mouse. The AutoCAD window as
shown in Fig. 1.3 includes cursor hairs which stretch across the drawing in both horizontal and vertical directions. Some operators prefer cursors hairs to be shorter. The length of the cursor hairs can be adjusted in the Display sub-menu of the Options dialog (page 13).

Palettes

A palette has already been shown - the Command palette. Two palettes which may be frequently used are the DesignCenter palette and the Properties palette. These can be called to screen from icons in the View/ Palettes panel.

- DesignCenter palette: Fig. 1.11 shows the DesignCenter palette with the Block drawings of building symbols from Fig. 9.1 from which the file Third type of chair block has been selected.

Fig. 1.11 A left-click on the DesignCenter icon brings the DesignCenter palette to screen

- Properties palette: Fig. 1.12 shows the Properties palette, called from the View/Palettes panel, in which the general and geometrical features of a selected line are shown. The line can be changed by the entering of new figures in parts of the palette.

Fig. 1.12 The Properties palette

Tool palettes

Click on Tool Palettes in the View/Palettes panel and the Tool Palettes All Palettes palette appears (Fig. 1.13).

Right-click in the title bar of the palette and a pop-up menu appears.
Click on a name in the menu and the selected palette appears. The palettes can be reduced in size by dragging at corners or edges, or hidden by clicking on the Auto-hide icon, or moved by dragging on the Move icon.
The palette can also be docked against either side of the
AutoCAD window.

Fig. 1.13 The Tool Palettes - All Palettes palette

Notes

Throughout this book tools will often be shown as selected from the panels. It will be seen in Chapter 3 that tools can be "called" in a variety of ways but tools will frequently be shown selected from tool panels although other methods will also be shown on occasion.

Dialogs

Dialogs are an important feature of AutoCAD 2010. Settings can be made in many of the dialogs, files can be saved and opened and changes can be made to variables.

Fig. 1.14 Opening the Select File dialog from the Open icon in the title bar

Examples of dialogs are shown in Figures 1.15 and 1.16. The first example is taken from the Select File dialog (Fig. 1.15), opened with a click on Open ... in the Quick Access Toolbar (Fig. 1.14). The second example shows part of the Options dialog (Fig. 1.16) in which many settings can be made to allow operators the choice of their methods of constructing drawings. The Options dialog can be opened with a click on Options ... in the right-click dialog opened in the command palette.

Fig. 1.15 The Select File dialog

Note the following parts in the dialog many of which are common to other AutoCAD dialogs:

- Title bar: showing the name of the dialog.
- Close dialog button: common to other dialogs.
- Pop-up list: a left-click on the arrow to the right of the field brings down a pop-up list listing selections available in the dialog.
- Buttons: a click on the Open button brings the selected drawing on screen. A click on the Cancel button, closes the dialog.
- Preview area: available in some dialogs - shows a miniature of the selected drawing or other feature, partly shown in Fig. 1.15.
Note the following in the Options dialog:
- Tabs: a click on any of the tabs in the dialog brings a sub-dialog on screen.
- Check boxes: a tick appearing in a check box indicates the function described against the box is on. No tick and the function is off. A click in a check box toggles between the feature being off or on.
- Radio buttons: a black dot in a radio button indicates the feature described is on. No dot and the feature is off.
- Slider: a slider pointer can be dragged to change sizes of the feature controlled by the slider.

- Snap Mode: also toggled using the F9 key. When snap is on, the cursor under mouse control can only be moved in jumps from one snap point to another. See also page 56.
- Grid Display: also toggled using the F7 key. When set on, a series of grid points appears in the drawing area. See also page 5.

Fig. 1.17 The buttons in left-hand end of the status bar

- Ortho Mode: also toggled using the F8 key. When set on, lines etc. can only be drawn vertically or horizontally.
- Polar Tracking: also toggled using the F10 key. When set on, a small tip appears showing the direction and length of lines etc. in degrees and units.
- Object Snap: also toggled using the F3 key. When set on, an osnap icon appears at the cursor pick box. See also page 57 .
- Object Snap Tracking: when set on, lines etc. can be drawn at exact coordinate points and precise angles.
- Allow/Disallow Dynamic UCS: also toggled by the F6 key. Used when constructing 3D solid models.
- Dynamic Input: also toggled by F12. When set on, the $\mathbf{x , y}$ coordinates and prompts show when the cursor hairs are moved.
- Show/Hide Lineweight: when set on, lineweights show on screen. When set off, lineweights only show in plotted/printed drawings.
- Quick Properties: a right-click brings up a pop-up menu, from which a click on Settings... causes the Drafting Settings dialog to appear.

Note

When constructing drawings in AutoCAD 2010 it is advisable to toggle between Snap, Ortho, Osnap and the other functions in order to make constructing easier.

Buttons at the right-hand end of the status bar

Another set of buttons at the right-hand end of the status bar are shown in Fig. 1.18. The uses of some of these will become apparent when reading future pages of this book. A click on the downward-facing arrow near the right-hand end of this set of buttons brings up the Application Status Bar Menu (Fig. 1.19) from which the buttons in the status bar can be set on and/or off.

Fig. 1.18 The buttons at the right-hand end of the status bar

Fig. 1.19 The Application Status Bar Menu

The AutoCAD coordinate system

In the AutoCAD 2D coordinate system, units are measured horizontally in terms of X and vertically in terms of Y. A 2D point in the AutoCAD drawing area can be determined in terms of X, Y (in this book referred to as x, y). $x, y=0,0$ is the origin of the system. The coordinate point $x, y=100,50$ is 100 units to the right of the origin and 50 units above the origin. The point $x, y=-100,-50$ is 100 units to the left of the origin and 50 points below the origin. Fig. 1.20 shows some 2D coordinate points in the AutoCAD window.

Fig. 1.20 The 2D coordinate points in the AutoCAD coordinate system
3D coordinates include a third coordinate (Z), in which positive Z units are towards the operator as if coming out of the monitor screen and negative Z units are going away from the operator as if towards the interior of the screen. 3D coordinates are stated in terms of $x, y, z \cdot x, y, z=100,50,50$ is 100 units to the right of the origin, 50 units above the origin and 50 units towards the operator. A 3D model drawing as if resting on the surface of a monitor is shown in Fig. 1.21.

Drawing templates

Drawing templates are files with an extension .dwt. Templates are files which have been saved with predetermined settings - such as Grid spacing, Snap spacing etc. Templates can be opened from the Select template dialog (Fig. 1.22) called by clicking the New... icon in the

Quick Access toolbar. An example of a template file being opened is shown in Fig. 1.22. In this example the template will be opened in Paper Space and is complete with a title block and borders.

Fig. 1.21 A 3D model drawing showing the X, Y and Z coordinate directions

Fig. 1.22 A template selected for opening in the Select template dialog

When AutoCAD 2010 is used in European countries and opened, the acadiso.dwt template is that most likely to appear on screen. In this part (Part 1 - 2D Design) of this book, drawings will usually be constructed in an adaptation of the acadiso.dwt template. To adapt this template:

1. In the command palette enter (type) grid followed by a right-click (or pressing the Enter key). Then enter $\mathbf{1 0}$ in response to the prompt which appears, followed by a right-click (Fig. 1.23).
```
Command: grid
Specify grid spacing(X) or [ON/OFF/Snap/Major/aDaptive/Limits/
Follow/Aspect]<0>: 10
Command:
```

Fig. 1.23 Setting Grid to 10
2. In the command palette enter snap followed by right-click. Then enter 5 followed by a right-click (Fig. 1.24).

```
Command: snap
Specify snap spacing or [ON/OFF/Aspect/Style/Type]<10>:5
Command:
```

Fig. 1.24 Setting Snap to 5
3. In the command palette enter limits, followed by a right-click. Rightclick again. Then enter 420,297 and right-click (Fig. 1.25).

```
Command: limits
Reset Model space limits:
Specify lower left corner or [ON/OFF] <0,0>:
Specify upper right corner <12,9>:420,297
Command:
```

Fig. 1.25 Setting Limits to 420,297
4. In the command palette enter zoom and right-click. Then in response to the line of prompts which appears enter a (for All) and right-click (Fig. 1.26).

```
Command: zoom
Specify corner of tindow, enter a scale factor ( }\textrm{nX}\mathrm{ or nXP), or
[A11/Center/Dynamic/Extents/Previous/Scale/Window/Object] <real time>: a
Regenerating model.
Command:
```

Fig. 1.26 Zooming to All
5. In the command palette enter units and right-click. The Drawing Units dialog appears (Fig. 1.27). In the Precision pop-up list of the Length
area of the dialog, click on $\mathbf{0}$ and then click the $\mathbf{O K}$ button. Note the change in the coordinate units showing in the status bar.

Fig. 1.27 Setting Units to 0

Fig. 1.28 Click Save
6. Click the Save icon in the Standard Annotation toolbar (Fig. 1.28). The Save Drawing As dialog appears. In the Files of type pop-up list select AutoCAD Drawing Template (*.dwt). The templates already in AutoCAD are displayed in the dialog. Click on acadiso.dwt, followed by another click on the Save button.

Note

1. Now when AutoCAD is opened the template saved as acadiso.dwt automatically loads with Grid set to 10, Snap set to 5, Limits set to 420,297 (size of an A3 sheet in millimetres) and with the drawing area zoomed to these limits, with Units set to $\mathbf{0}$.
2. However, if there are multiple users of the computer, it is advisable to save your template to another file name - e.g. my_template.dwt.
3. Other features will be added to the template in future chapters.

Method of showing entries in the command palette

Throughout the book, when a tool is "called" usually by a click on a tool icon in a panel - in this example picking the Navigation/Zoom tool - the command palette will show as follows:

```
Command:_zoom right-click
Specify corner of window, enter a scale
    factor (nX or nXP), or [All/Center/Dynamic/
    Extents/Previous/Scale/Window/Object] < real
    time > :enter a (All)right-click
Regenerating model.
Command:
```


Note

In later examples this may be shortened to:

```
Command: _zoom
```

[prompts]:enter a right-click
Command:

Note

1. In the above enter means type the given letter, word or words at the Command: prompt.
2. Right-click means press the Return (right) button of the mouse or press the Return key of the keyboard.

Tools and tool icons

In AutoCAD 2010, tools are shown as names and icons in panels, in toolbars or in drop-down menus. When the cursor is placed over a tool icon a description shows with the name of the tool as shown and an explanation in diagram form as in the example given in Fig. 1.7 (page 7).

If a small outward-facing arrow is included at the right-hand side of a tool icon, when the cursor is placed over the icon and the pick button of the mouse depressed and held, a flyout appears which includes other features. An example is given in Fig. 1.8 (page 7).

Another AutoCAD workspace

Click Workspace Switching icon at the bottom right-hand corner of the AutoCAD window. In the menu which appears click AutoCAD Classic (Fig. 1.29). The AutoCAD Classic workspace appears (Fig. 1.30). This includes the Draw toolbar docked against the left-hand side of the window and the Modify toolbar docked against the right-hand side of the window with other toolbars docked against the top of the window. The menu bar is included in the example given in Fig. 1.30.

Other workspaces can be designed as the operator wishes. One in particular which may appeal to some operators is to click the Clear Screen icon at the bottom-right corner of the AutoCAD window (Fig. 1.31). This example shows a clear screen window from the AutoCAD Classic workspace. This allows more working space.

Fig. 1.29 Selecting AutoCAD Classic from the Workspace Switching menu

The Ribbon contains groups of panels placed, by default, at the top of the AutoCAD 2010 window. There are, by default, 7 groups of panels called from tabs above the panels -Home, Insert, Annotate, Parametric, View, Manage and Output. Other groups can be added if wished by using the Custom User Interface dialog.

If a small arrow is showing to the right of the panel name, a click on the arrow brings down a flyout showing additional tool icons not included in the panel. As an example Fig. 1.32 shows the flyout from the Home/ Draw panel.

Fig. 1.30 The AutoCAD Classic window

Fig. 1.31 The AutoCAD Classic workspace after the Clear Screen icon has been clicked

Fig. 1.32 The Home/ Draw panel and its pop-up

A right-click on the Minimise to Panel Titles button brings down a menu a click on Undock in this menu and the Ribbon becomes a palette (Fig. 1.33). A right-click menu in the palette shows that the palette can now be docked against either side of the window. Some operators will prefer selecting tools from a docked Ribbon because of the larger workspace obtained when it is so docked.

Fig. 1.33 The Ribbon as a palette with its right-click menu

A left-click on the Minimize to Panel Titles button causes the Ribbon panels to disappear leaving only the tabs showing, but each panel can then be selected from the panel tabs. Fig. 1.34 shows the AutoCAD window with the Ribbon minimised to tabs and with the Home tab selected, icons of the other panels appear. Line is then selected from the Home/Draw panel. When the Line tool comes into action the Home panels disappear again leaving a larger drawing area than before the panels were minimised.

Fig. 1.34 The AutoCAD window with the panels minimised

The Quick View Drawings button

One of the buttons at the right-hand end of the status bar is the Quick View Drawings button. A click on this button brings miniatures of recent drawings on screen (Fig. 1.35). This can be of value when wishing to check back on features of recent drawings in relation to the current drawing on screen.

Fig. 1.35 The result of a click on the Quick View Drawings button

Customisation of User Interface

The AutoCAD 2010 workspace can be arranged in any format the operator wishes by making settings in the Customize User Interface dialog (Fig. 1.36) brought to screen from the right-click menu from the button in the Quick Access toolbar. The dialog can be opened using other methods such as entering cui at the command line, but using this right-click menu is possibly the quickest method. The dialog is only shown here to alert the reader to the fact that he/she can customise the workspace being used to suit their own methods of working. Page space in this book does not allow further explanation.

Fig. 1.36 The Customize User Interface dialog

REVISION NOTES

1. A double-click on the AutoCAD 2010 shortcut in the Windows desktop opens the AutoCAD window.
2. There are three main workspaces in which drawings can be constructed - the 2D Drafting \& Annotation, Classic AutoCAD and the 3D Modeling workspace. Part 1, 2D Design of this book deals with 2D drawings that will be constructed mainly in the 2D Drafting \& Annotation workspace. In Part 2, 3D Design, 3D model drawings will be mainly constructed in the 3D Modeling workspace.
3. All constructions in this book involve the use of a mouse as the digitiser. When a mouse is the digitiser:
A left-click means pressing the left-hand button (the Pick) button.
A right-click means pressing the right-hand button (the Return button.)
A double-click means pressing the left-hand button twice in quick succession.
Dragging means moving the mouse until the cursor is over an item on screen, holding
the left-hand button down and moving the mouse. The item moves in sympathy to the mouse movement.
To pick has a similar meaning to a left-click.
4. Palettes are a particular feature of AutoCAD 2010. The Command palette and the DesignCenter palette will be in frequent use.
5. Tools are shown as icons in the tool panels.
6. When a tool is picked, a tooltip appears describing the action of the tool. Most tools show a small tooltip, followed shortly afterwards by a larger one.
7. Dialogs allow opening and saving of files and the setting of parameters.
8. A number of right-click menus are used in AutoCAD 2010.
9. A number of buttons in the status bar can be used to toggle features such as snap and grid. Functions keys of the keyboard can be also used for toggling some of these functions.
10. The AutoCAD coordinate system determines the position in units of any 2 D point in the drawing area (2D Drafting \& Annotation and Classic AutoCAD) and any point in 3D space (3D Modeling).
11. Drawings are usually constructed in templates with predetermined settings. Some templates include borders and title blocks.

Note

Throughout this book when tools are to be selected from panels in the ribbon the tools will be shown in the form e.g. Home/Draw - the name of the tab in the ribbon title bar, followed by the name of the panel from which the tool is to be selected.

Chapter 2

Introducing drawing

AIMS OF THIS CHAPTER

The contents of this chapter aim to introduce:

1. The construction of 2D drawing in the 2D Drafting \& Annotation workspace.
2. The drawing of outlines using the Line, Circle and Polyline tools from the Home/Draw panel.
3. Drawing to snap points.
4. Drawing to absolute coordinate points.
5. Drawing to relative coordinate points.
6. Drawing using the "tracking" method.
7. The use of the Erase, Undo and Redo tools.

The 2D Drafting \& Annotation workspace

Illustrations throughout this chapter will be shown as working in the 2D Drafting \& Annotation workspace. In this workspace the Home/Draw panel is at the left-hand end of the Ribbon and Draw tools can be selected from the panel as indicated by a click on the Line tool (Fig. 2.1). In this chapter all examples will show tools as selected from the Home/Draw panel. However, methods of construction will be the same if the reader wishes to work in other workspaces. When working in the Classic AutoCAD workspace Draw tools can be selected from the Draw toolbar (Fig. 2.2) The Draw tools can also be selected from the Draw drop-down menu (Fig. 2.2) whether working in 2D Drafting \& Annotation or Classic AutoCAD.

Fig. 2.1 The Line tool from the Home/Draw panel with its tooltip

Fig. 2.2 Selecting the Line tool in the Classic AutoCAD workspace

Drawing with the line tool

First example - Line tool (Fig. 2.4)

1. Open AutoCAD. The drawing area will show the settings of the acadiso.dwt template - Limits set to 420,297, Grid set to 10, Snap set to $\mathbf{5}$ and Units set to $\mathbf{0}$.
2. Left-click on the Line tool in the Home/Draw panel, in the Draw toolbar (Figs. 2.1 and 2.2) or enter line or \mathbf{l} at the command line.

Notes

(a) The tooltip appears when the tool icon is clicked.
(b) The prompt Command:_line Specify first point appears in the command window at the command line (Fig. 2.3).
Command:
Command:
Command: _line Specify first point:

Fig. 2.3 The prompt appearing at the command line in the Command palette when Line is "called"
3. Make sure Snap is on by either pressing the F9 key or the Snap Mode button in the status bar. $<$ Snap on $>$ will show in the command palette.
4. Move the mouse around the drawing area. The cursors pick box will jump from point to point at 5 unit intervals. The position of the pick box will show as coordinate numbers in the status bar (left-hand end).
5. Move the mouse until the coordinate numbers show $\mathbf{6 0 , 2 4 0 , 0}$ and press the pick button of the mouse (left-click).
6. Move the mouse until the coordinate numbers show $\mathbf{2 6 0 , 2 4 0 , 0}$ and left-click.
7. Move the mouse until the coordinate numbers show $\mathbf{2 6 0 , 1 1 0 , 0}$ and left-click.
8. Move the mouse until the coordinate numbers show $\mathbf{6 0 , 1 1 0 , 0}$ and left-click.
9. Move the mouse until the coordinate numbers show $\mathbf{6 0}, \mathbf{2 4 0 , 0}$ and leftclick. Then press the Return button of the mouse (right-click).

The line rectangle Fig. 2.4 appears in the drawing area.

Second example - Line tool (Fig. 2.6)

1. Clear the drawing from the screen with a click on the drawing Close button of the AutoCAD drawing area. Make sure it is not the AutoCAD 2010 window button.

Fig. 2.4 First example - Line tool
2. The warning window Fig. 2.5 appears in the centre of the screen. Click its No button.

Fig. 2.5 The AutoCAD warning window
3. Left-click New... button in the File drop-down menu and from the Select template dialog which appears double-click on acadiso.dwt.
4. Left-click on the Line tool icon and enter figures as follows at each prompt of the command line sequence:

Command:_line Specify first point:enter 80,235
right-click
Specify next point or [Undo]: enter 275,235
right-click
Specify next point or [Undo]:enter 295,210
right-click
Specify next point or [Close/Undo]:enter 295,100 right-click
Specify next point or [Close/Undo]:enter 230,100 right-click
Specify next point or [Close/Undo]: enter 230,70 right-click

```
Specify next point or [Close/Undo]:enter 120,70
    right-click
Specify next point or [Close/Undo]:enter 120,100
    right-click
Specify next point or [Close/Undo]:enter 55,100
    right-click
Specify next point or [Close/Undo]:enter 55,210
    right-click
Specify next point or [Close/Undo]:enter c (Close)
right-click
Command:
```

The result is as shown in Fig. 2.6.

Fig. 2.6 Second example - Line tool

Third example - Line tool (Fig. 2.7)

1. Close the drawing and open a new acadiso.dwt window.
2. Left-click on the Line tool icon and enter figures as follows at each prompt of the command line sequence:
```
Command: line Specify first point:enter 60,210
right-click
Specify next point or [Undo]:enter @50,0
    right-click
Specify next point or [Undo]:enter @0,20
    right-click
Specify next point or [Close/Undo]:enter @130,0
right-click
```

Specify next point or [Close/Undo]:enter @0,-20 right-click
Specify next point or [Close/Undo]:enter @50,0 right-click
Specify next point or [Close/Undo]:enter @0,-105 right-click
Specify next point or [Close/Undo]:enter @-50,0 right-click
Specify next point or [Close/Undo]:enter @0,-20 right-click
Specify next point or [Close/Undo]:enter @-130,0
right-click
Specify next point or [Close/Undo]:enter @0,20
right-click
Specify next point or [Close/Undo]:enter @-50,0 right-click
Specify next point or [Close/Undo]:enter c (Close) right-click
Command:
The result is as shown in Fig. 2.7.

Fig. 2.7 Third example - Line tool

Note

1. The figures typed at the keyboard determining the corners of the outlines in the above examples are two-dimensional (2D) x, y coordinate points. When working in 2D, coordinates are expressed in terms of two numbers separated by a comma.
2. Coordinate points can be shown as positive or as negative numbers.
3. The method of constructing an outline as shown in the first two examples above is known as the absolute coordinate entry method, where the x, y coordinates of each corner of the outlines are entered at the command line as required.
4. The method of constructing an outline as shown in the third example is known as the relative coordinate entry method - coordinate points are entered relative to the previous entry. In relative coordinate entry, the @ symbol is entered before each set of coordinates with the following rules in mind:

+ ve x entry is to the right.
- ve x entry is to the left.
+ ve y entry is upwards.
- ve y entry is downwards.

5. The next example (the fourth) shows how lines at angles can be drawn taking advantage of the relative coordinate entry method. Angles in AutoCAD are measured in 360 degrees in a counterclockwise (anticlockwise) direction (Fig. 2.8). The $<$ symbol precedes the angle.

Fig. 2.8 The counter-clockwise direction of measuring angles in AutoCAD

Fourth example - Line tool (Fig. 2.9)

1. Close the drawing and open a new acadiso.dwt window.
2. Left-click on the Line tool icon and enter figures as follows at each prompt of the command line sequence:

Command:_line Specify first point:enter 70,230
Specify next point:right-click @220,0
Specify next point:right-click @0,-70
Specify next point or [Undo]:right-click @115 < 225

Specify next point or [Undo]:right-click @-60,0
Specify next point or [Close/Undo]:right-click @115 < 135
Specify next point or [Close/Undo]:right-click @0,70
Specify next point or [Close/Undo]:right-click c (Close)
Command:
The result is as shown in Fig. 2.9.

Fig. 2.9 Fourth example - Line tool

Fifth example - Line tool (Fig. 2.10)

Another method of constructing accurate drawings is by using a method known as tracking. When Line is in use, as each Specify next point: appears at the command line, a rubber-banded line appears from the last point entered. Drag the rubber-band line in any direction and enter a number at the keyboard, followed by a right-click. The line is drawn in the dragged direction of a length in units equal to the entered number.

In this example because all lines are drawn in vertical or horizontal directions, either press the F8 key or click the ORTHO button in the status bar which will only allow drawing horizontally or vertically.

1. Close the drawing and open a new acadiso.dwt window.
2. Left-click on the Line tool icon and enter figures as follows at each prompt of the command line sequence:
```
Command:_line Specify first point:enter 65,220
    right-click
Specify next point:drag to right enter 240
    right-click
Specify next point:drag down enter 145 right-click
Specify next point or [Undo]:drag left enter 65
    right-click
Specify next point or [Undo]:drag upwards enter 25
    right-click
Specify next point or [Close/Undo]:drag left enter
        120 right-click
Specify next point or [Close/Undo]:drag upwards
    enter 25 right-click
Specify next point or [Close/Undo]:drag left enter
    5 5 ~ r i g h t - c l i c k
Specify next point or [Close/Undo]:c (Close)
    right-click
Command:
```

The result is as shown in Fig. 2.10.

Fig. 2.10 Fifth example - Line tool

Drawing with the circle tool

First example - circle tool (Fig. 2.13)

1. Close the drawing just completed and open the acadiso.dwt template.
2. Left-click on the Circle tool icon in the Home/Draw panel (Fig. 2.11).
3. Enter a coordinate and a radius against the prompts appearing in the command window as shown in Fig. 2.12, followed by right-clicks. The circle (Fig. 2.13) appears on screen.

Fig. 2.13 First example

- Circle tool

Fig. 2.11 The Circle tool from the Home/Draw panel

```
Command: _circle Specify center point for circle or [3P/2P/Ttr (tan tan
radius)]: 180,160
Specify radius of circle or [Diameter]: 55
Command:
```

Fig. 2.12 First example - Circle. The command line prompts when Circle is called

Second example - Circle tool (Fig. 2.14)

1. Close the drawing and open the acadiso.dwt screen.
2. Left-click on the Circle tool icon and construct two circles as shown in the drawing Fig. 2.14 in the positions and radii shown in Fig. 2.15.
3. Click the Circle tool again and against the first prompt enter \mathbf{t} (the abbreviation for the prompt $\boldsymbol{\operatorname { t a n }} \boldsymbol{\operatorname { t a n }}$ radius), followed by a right-click.

Command_circle Specify center point for circle or [3P/2P/Ttr (tan tan radius]: enter t right-click Specify point on object for first tangent of circle: pick

```
Specify point on object for second tangent of
    circle: pick
Specify radius of circle (50):enter 40 right-click
Command:
```


Fig. 2.14 Second example - Circle tool - the two circles of radius 50

Fig. 2.15 Second example - Circle tool
The radius $\mathbf{4 0}$ circle tangential to the two circle already drawn then appears (Fig. 2.15).

Notes

1. When a point on either circle is picked a tip (Deferred Tangent) appears. This tip will only appear when the Object Snap button is set on with a click on its button in the status bar, or the $\mathbf{F} \mathbf{3}$ key of the keyboard is pressed.
2. Circles can be drawn through 3 points or through 2 points entered at the command line in response to prompts brought to the command line by using $\mathbf{3 P}$ and $\mathbf{2 P}$ in answer to the circle command line prompts.

The Erase tool

If an error has been made when using any of the AutoCAD 2010 tools, the object or objects which have been incorrectly drawn can be deleted with the Erase tool. The Erase tool icon can be selected from the Home/ Modify panel (Fig. 2.16) or by entering \mathbf{e} at the command line.

Fig. 2.16 The Erase tool icon from the Home/Modify panel

First example - Erase (Fig. 2.18)

1. With Line construct the outline Fig. 2.17.

Fig. 2.17 First example - Erase. An incorrect outline
2. Assuming two lines of the outline have been incorrectly drawn, leftclick the Erase tool icon. The command line shows:
Command:_erase
Select objects:pick one of the lines 1 found
Select objects:pick the other line 2 total
Select objects:right-click
command:

And the two lines are deleted (right-hand drawing of Fig. 2.18).

Fig. 2.18 First example - Erase

Second example - Erase (Fig. 2.19)

The two lines could also have been deleted by the following method:

1. Left-click the Erase tool icon. The command line shows:

Command:_erase
Select objects:enter c(Crossing)
Specify first corner:pick
Specify opposite corner: pick 2 found
Select objects:right-click
Command:
And the two lines are deleted as in the right-hand drawing Fig. 2.19.

Fig. 2.19 Second example - Erase

Undo and Redo tools

Two other tools of value when errors have been made are the Undo and Redo tools. To undo the last action taken by any tool when constructing a drawing, either left-click the Undo tool in the Quick Access toolbar
(Fig. 2.20) or enter \mathbf{u} at the command line. No matter which method is adopted the error is deleted from the drawing.

Fig. 2.20 The Undo tool in the Title bar
Everything constructed during a session of drawing can be undone by repeated clicking on the Undo tool icon or by repeatedly entering u's at the command line.

To bring back objects that have just been removed by the use of Undo's, left-click the Redo tool icon in the Quick Access toolbar (Fig. 2.21) or enter redo at the command line.

Drawing with the Polyline tool

When drawing lines with the Line tool, each line drawn is an object in its own right. A rectangle drawn with the Line tool is four objects. A rectangle drawn with the Polyline tool is a single object. Lines of different thickness, arcs, arrows and circles can all be drawn using this tool, as will be shown in the examples describing constructions using the Polyline tool. Constructions resulting from using the tool are known as polylines or plines.

The Polyline tool can be called from the Home/Draw panel (Fig. 2.22) or by entering $\mathbf{p l}$ at the command line.

Fig. 2.22 The Polyline tool icon in the Home/Draw panel

First example - Polyline tool (Fig. 2.23)

Fig. 2.23 First example - Polyline tool

Note

In this example enter and right-click have not been included.
Left-click the Polyline tool. The command line shows:
Command:_pline Specify start point: 30,250
Current line width is 0
Specify next point or [Arc/Halfwidth/Length/
Undo/Width]: 230,250
Specify next point or [Arc/Close/Halfwidth/ Length/Undo/Width]: 230,120
Specify next point or [Arc/Close/Halfwidth/ Length/Undo/Width]: 30,120
Specify next point or [Arc/Close/Halfwidth/ Length/Undo/Width]: c (Close)
Command:

Note

1. Note the prompts: Arc for constructing pline arcs; Close to close an outline; Halfwidth to halve the width of a wide pline; Length to enter the required length of a pline; Undo to undo the last pline constructed; Close to close an outline.
2. Only the capital letter(s) of a prompt needs to be entered in upper or lower case to make that prompt effective.
3. Other prompts will appear when the Polyline tool is in use as will be shown in later examples.

Second example - Polyline tool (Fig. 2.24)

This will be a long sequence, but it is typical of a reasonably complex drawing using the Polyline tool. In the following sequences, when a prompt line is to be repeated, the prompts in square brackets ([]) will be replaced by [prompts].
Left-click the Polyline tool icon. The command line shows:
Command:_pline Specify start point: 40,250
Current line width is 0
Specify next point or [Arc/Halfwidth/Length/Undo/
Width]: w (Width)
Specify starting width <0> : 5
Specify ending width <5> :right-click
Specify next point or [Arc/Close/Halfwidth/Length/Undo/ Width]: 160,250
Specify next point or [prompts]: h (Halfwidth)
Specify starting half-width <2.5> : 1
Specify ending half-width <1> :right-click
Specify next point or [prompts]: 260,250
Specify next point or [prompts]: 260,180
Specify next point or [prompts]: w (Width)
Specify starting width <1> : 10
Specify ending width <10> :right-click
Specify next point or [prompts]: 260,120
Specify next point or [prompts]: h (Halfwidth)
Specify starting half-width <5> : 2
Specify ending half-width <2> :right-click
Specify next point or [prompts]: 160,120
Specify next point or [prompts]: w (Width)
Specify starting width <4> : 20
Specify ending width <20> :right-click
Specify next point or [prompts]: 40,120
Specify starting width <20> : 5
Specify ending width <5> :right-click
Specify next point or [prompts]: c (Close)
command:

Fig. 2.24 Second example - Polyline tool

Third example - Polyline tool (Fig. 2.25)

Left-click the Polyline tool icon. The command line shows:
Command:_pline Specify start point: 50,220
Current line width is 0
[prompts]: w (Width)
Specify starting width <0> : 0.5
Specify ending width <0.5> :right-click
Specify next point or [prompts]: 120,220
Specify next point or [prompts]: a (Arc)
Specify endpoint of arc or [prompts]: s (second pt)
Specify second point on arc: 150,200
Specify end point of arc: 180,220
Specify end point of arc or [prompts]: l (Line)
Specify next point or [prompts]: 250,220
Specify next point or [prompts]: 260,190
Specify next point or [prompts]: a (Arc)
Specify endpoint of arc or [prompts]: s (second pt)
Specify second point on arc: 240,170
Specify end point of arc: 250,160
Specify end point of arc or [prompts]: l (Line)
Specify next point or [prompts]: 250,150
Specify next point or [prompts]: 250,120
And so on until the outline Fig. 2.25 is completed.

Fig. 2.25 Third example - Polyline tool

Fourth example - Polyline tool (Fig. 2.26)

Left-click the Polyline tool icon. The command line shows:
Command:_pline Specify start point: 80,170 Current line width is 0
Specify next point or [prompts]: w (Width)
Specify starting width <0> : 1
Specify ending width <1> :right-click

Specify next point or [prompts]: a (Arc)
Specify endpoint of arc or [prompts]: s (second pt)
Specify second point on arc: 160,250
Specify end point of arc: 240,170
Specify end point of arc or [prompts]: c (Close)
Command:
And the circle Fig. 2.26 is formed.

Fig. 2.26 Fourth example - Polyline tool

Fifth example - Polyline tool (Fig. 2.27)

Left-click the Polyline tool icon. The command line shows:
Command:_pline Specify start point: 60,180
Current line width is 0
Specify next point or [prompts]: w (Width)
Specify starting width <0> : 1
Specify ending width <1> :right-click
Specify next point or [prompts]: 190,180
Specify next point or [prompts]: w (Width)
Specify starting width <1> : 20
Specify ending width <20> : 0
Specify next point or [prompts]: 265,180
Specify next point or [prompts]:right-click Command:

And the arrow Fig. 2.27 is formed.

Fig. 2.27 Fifth example - Polyline tool

REVISION NOTES

1. The following terms have been used in this chapter:

Left-click - press the left-hand button of the mouse.
Click - same meaning as left-click.
Double-click - press the left-hand button of the mouse twice.
Right-click - press the left-hand button of the mouse - has the same result as pressing the Return key of the keyboard.
Drag - move the cursor on to an object and, holding down the right-hand button of the mouse, pull the object to a new position.
Enter - type the letters or numbers which follow at the keyboard.
Pick - move the cursor on to an item on screen and press the left-hand button of the mouse.
Return - press the Enter key of the keyboard. This key may also marked with a left facing arrow. In most cases (but not always) has the same result as a right-click.
Dialog - a window appearing in the AutoCAD window in which settings may be made.
Drop-down menu - a menu appearing when one of the names in the menu bars is clicked.
Tooltip - the name of a tool appearing when the cursor is placed over a tool icon from a toolbar.
Prompts - text appearing in the command window when a tool is selected which advise the operator as to which operation is required.
2. Three methods of coordinate entry have been used in this chapter:

Absolute method - the coordinates of points on an outline are entered at the command line in response to prompts.
Relative method - the distances in coordinate units are entered preceded by @ from the last point which has been determined on an outline. Angles, which are measured in a counter-clockwise direction, are preceded by $<$.
Tracking - the rubber band of the tool is dragged in the direction in which the line is to be drawn and its distance in units is entered at the command line followed by a right-click.
Line and Polyline tools - an outline drawn using the Line tool consists of a number of objects - the number of lines in the outline. An outline drawn using the Polyline is a single object.

Exercises

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-1-85617-868-6

1. Using the Line tool construct the rectangle Fig. 2.28.

Fig. 2.28 Exercise 1
2. Construct the outline Fig. 2.29 using the Line tool. The coordinate points of each corner of the rectangle will need to be calculated from the lengths of the lines between the corners.

3. Using the Line tool, construct the outline Fig. 2.30.

Fig. 2.30 Exercise 3
4. Using the Circle tool, construct the two circles of radius 50 and 30. Then using the Ttr prompt add the circle of radius 25 (Fig. 2 31).

Fig. 2.31 Exercise 4

Fig. 2.29 Exercise 2
5. In an acadiso.dwt screen and using the Circle and line tools, construct the line and circle of radius $\mathbf{4 0}$ shown in Fig. 2 32. The, using the Ttr prompt, add the circle of radius 25.

50,130

Fig. 2.32 Exercise 5
6. Using the Line tool construct the two lines at the length and angle as given in Fig. 2.33. Then with the Ttr prompt of the Circle tool, add the circle as shown.

Fig. 2.33 Exercise 6
7. Using the Polyline tool, construct the outline given in Fig. 2.34.

Fig. 2.34 Exercise 7
8. Construct the outline shown in Fig. 2.35.

Fig. 2.35 Exercise 8
9. With the Polyline tool construct the arrows shown in Fig. 2.36.

Fig. 2.36 Exercise 9

Chapter 3

Draw tools, Object Snap and Dynamic Input

AIMS OF THIS CHAPTER

The aims of this chapter are:

1. To give examples of the use of the Arc, Ellipse, Polygon, Rectangle tools from the Home/Draw panel.
2. To give examples of the uses of the Polyline Edit (pedit) tool.
3. To introduce the Object Snaps (osnap) and their uses.
4. To introduce the Dynamic Input (DYN) system and its uses.

Introduction

The majority of tools in AutoCAD 2010 can be called into use by any one of the following five methods:

1. By clicking on the tool's icon in the appropriate panel. Fig. 3.1 shows the Polygon tool called from the Home/Draw panel.

Fig. 3.1 The Polygon tool and its tooltip selected from the Home/Draw Panel
2. When working in the Classic AutoCAD screen, with a click on the tool's name in a toolbar. Fig. 3.2 shows the Draw toolbar. Placing the cursor on the Polygon tool icon in this toolbar shows the same tooltip as that shown in Fig. 3.2.

Fig. 3.2 The tool icons in the Draw toolbar
3. By clicking on the tool's name in an appropriate drop-down menu.

Fig. 3.3 shows the tool names and icons displayed in the Draw dropdown menu. It is necessary to first bring the menu bar to screen with a click on Show Menu Bar in the left-click menu of the Quick Access toolbar (Fig. 3.4) if the menu bar is not already on screen.
4. By entering an abbreviation for the tool name at the command line in the command palette. For example the abbreviation for the Line tool is $\mathbf{1}$, for the Polyline tool it is $\mathbf{p l}$ and for the Circle tool it is \mathbf{c}.
5. By entering the full name of the tool at the command line.
6. By making use of the Dynamic Input method of constructing drawings (see page 60).

In practice operators constructing drawings in AutoCAD 2010 may well use a combination of these six methods.

Fig. 3.4 Selecting Show Menu Bar from the left-click menu in the Quick Access Toolbar

The Arc tool

In AutoCAD 2010, arcs can be constructed using any three of the following characteristics of an arc: its Start point; a point on the arc (Second point); its Center; its End; its Radius; the Length of the arc; the Direction in which the arc is to be constructed; the Angle between lines of the arc.

These characteristics are shown in the menu appearing with a click on the Arc tool in the Home/Draw panel (Fig. 3.5).

Fig. 3.5 The Arc tool flyout in the Home/ Draw panel

To call the Arc tool click on the flyout of its tool icon in the Home/Draw panel, click on Arc in the Draw toolbar, click on Arc in the Draw dropdown menu, or enter a or arc at the command line. In the following examples initials of command prompts will be shown instead of selections from the menu shown in Fig. 3.6.

First example - Arc tool (Fig. 3.6)

Fig. 3.6 Examples - Arc tool

Left-click the Arc tool icon. The command line shows:
Command: arc Specify start point of arc or [Center]: 100,220
Specify second point of arc or [Center/End]: 55,250
Specify end point of arc: 10,220
Command:

Second example - Arc tool (Fig. 3.6)

Command:right-click brings back the Arc sequence ARC Specify start point of arc or [Center]: c (Center)
Specify center point of arc: 200,190
Specify start point of arc: 260,215
Specify end point of arc or [Angle/chord Length]: 140,215
Command:

Third example - Arc tool (Fig. 3.6)

Command:right-click brings back the Arc sequence ARC Specify start point of arc or [Center]: 420,210

```
Specify second point of arc or [Center/End]: e
    (End)
Specify end point of arc: 320,210
Specify center point of arc or
    [Angle/Direction/Radius]: r (Radius)
Specify radius of arc: 75
Command:
```


The Ellipse tool

 directly in front of the circle and the circle is rotated through an angle about its horizontal diameter. Ellipses are measured in terms of two axes - a major axis and a minor axis, the major axis being the diameter of the circle, the minor axis being the height of the ellipse after the circle has been rotated through an angle (Fig. 3.7).

Fig. 3.7 An ellipse can be regarded as viewing a rotated circle

Fig. 3.8 The Ellipse tool icon flyout in the Home/Draw panel

To call the Ellipse tool, click on its tool icon in the Home/Draw panel (Fig. 3.8), click its name in the Draw drop-down menu, click on its tool icon in the Draw toolbar or enter a or arc at the command line.

First example - Ellipse (Fig. 3.9)

Left-click the Ellipse tool icon. The command line shows:
Command:_ellipse

Specify axis endpoint of elliptical arc or [Arc/ Center]: 30,190
Specify other endpoint of axis: 150,190
Specify distance to other axis or [Rotation] 25 Command:

Fig. 3.9 Examples - Ellipse

Second example - Ellipse (Fig. 3.9)

In this second example, the coordinates of the centre of the ellipse (the point where the two axes intersect) are entered, followed by entering coordinates for the end of the major axis, followed by entering the units for the end of the minor axis.
Command: right-click
ELLIPSE
Specify axis endpoint of elliptical arc or [Arc/ Center]: c
Specify center of ellipse: 260,190
Specify endpoint of axis: 205,190
Specify distance to other axis or [Rotation]: 30 Command:

Third example - Ellipse (Fig. 3.9)

In this third example, after setting the positions of the ends of the major axis, the angle of rotation of the circle from which an ellipse can be obtained is entered.
Command: right-click
ELLIPSE
Specify axis endpoint of elliptical arc or [Arc/ Center]: 30,100

```
Specify other endpoint of axis: 120,100
Specify distance to other axis or [Rotation]: r
    (Rotation)
Specify rotation around major axis: 45
Command:
```


Saving drawings

Fig. 3.10 Selecting Save As from the Quick Access menu

Fig. 3.11 The Save Drawing As dialog

Unless you are the only person to use the computer on which the drawing has been constructed, it is best to save work to a USB memory stick or other form of temporary saving device. To save a drawing to a USB memory stick:

1. Place a memory stick in a USB drive.
2. In the Save in: field of the dialog, click the arrow to the right of the field and from the popup list select KINGSTON [F:] (the name of my USB drive and stick).
3. In the File name: field of the dialog, type a name. The file name extension .dwg does not need to be typed - it will be added to the file name.
4. Left-click the Save button of the dialog. The drawing will be saved with the file name extension .dwg - the AutoCAD file name extension.

Snap

In previous chapters several methods of constructing accurate drawings have been described - using Snap; absolute coordinate entry; relative coordinate entry and tracking. Other methods of ensuring accuracy between parts of constructions are by making use of Object Snaps (Osnaps).

Snap Mode, Grid Display and Object Snaps can be toggled on/off from the buttons in the status bar or by pressing the keys F9 (Snap Mode), F7 (Grid Display) and F3 (Object Snap).

Object Snaps (Osnaps)

Object Snaps allow objects to be added to a drawing at precise positions in relation to other objects already on screen. With Object Snaps, objects can be added to the end points, mid points, to intersections of objects, to centres and quadrants of circles and so on. Object Snaps also override snap points even when snap is set on.

To set Object Snaps - at the command line:
Command:enter os
And the Drafting Settings dialog appears (Fig. 3.12). Click the Object Snap tab in the upper part of the dialog and click the check boxes to the right of the Object Snap names to set them on (or off in on).

Fig. 3.12 The Drafting Settings dialog with some of the Object Snaps set on

When Object Snaps are set ON, as outlines are constructed using Object
Snaps so Object Snap icons and their tooltips appear as indicated in Fig. 3.13.

Fig. 3.13 Three Object Snap icons and their tooltips

First example - Object Snap (Fig. 3.14)

Call the Polyline tool:
Command:_pline
Specify start point: 50,230
[prompts]: w (Width)
Specify starting width: 1
Specify ending width <1> :right-click
Specify next point: 260,230
Specify next point:right-click
Command:right-click
PLINE
Specify start point: pick the right-hand end of
the pline
Specify next point: 50,120
Specify next point:right-click
Command:right-click
PLINE

```
Specify start point: pick near the middle of first
    pline
Specify next point: 155,120
Specify next point:right-click
Command:right-click
PLINE
Specify start point: pick the plines at their
    intersection
Specify start point:right-click
Command:
```

The result is shown in Fig. 3.14. In this illustration the Object Snap tooltips are shown as they appear when each object is added to the outline.

Fig. 3.14 First example - Osnaps
It is sometimes advisable not to have Object Snaps set on in the Drafting Settings dialog, but to set Object Snap off and use Object Snap abbreviations at the command line when using tools. The following example shows the use of some of these abbreviations.

Second example - Object Snap abbreviations

(Fig. 3.15)
Call the Circle tool:
Command:_circle
Specify center point for circle: 180,170

```
Specify radius of circle: 60
Command: enter l (Line) right-click
Specify first point:enter qua right-click
of pick near the upper quadrant of the circle
Specify next point:enter cen right-click
of pick near the centre of the circle
Specify next point:enter qua right-click
of pick near right-hand side of circle
Specify next point:right-click
Command:
```


Note

With Object Snaps off, the following abbreviations can be used:

```
end - endpoint;
```

mid - midpoint;
int - intersection;
cen - centre;
qua - quadrant;
nea - nearest;
ext - extension.

Fig. 3.15 Second example - Osnaps

Dynamic Input (DYN)

When Dynamic Input is set on by either pressing the F12 key or with a click on the Dynamic Input button in the status bar, dimensions,
coordinate positions and commands appear as tips when no tool is in action (Fig. 3.16).

Fig. 3.16 The DYN tips appearing when no tool is in action and the cursor is moved

With a tool in action, as the cursor hairs are moved in response to movement of the mouse, Dynamic Input tips showing the coordinate figures for the point of the cursor hairs will show (Fig. 3.17), together with other details. To see the drop-down menu giving the prompts available with Dynamic Input press the down key of the keyboard and click the prompt to be used. Fig. 3.17 shows the Arc prompt as being the next to be used.

Fig. 3.17 Coordinate tips when DYN is in action

Notes on the use of dynamic input

Although Dynamic Input can be used in any of the AutoCAD 2010 workspaces, some operators may prefer a larger working area. To achieve this a click on the Clean Screen icon in the bottom right-hand corner of the AutoCAD 2010 window produces an uncluttered workspace area. The command palette can be cleared from screen by entering commandlinehide at the command line. To bring it back press the keys $\mathbf{C t r l}+9$. These two operations produce a screen showing only title and status bars (Fig. 3.18). Some operators may well prefer working in such a larger-than-normal workspace.

Fig. 3.18 Example of using DYN in a clear screen

Dynamic Input settings are made in the Drafting Settings dialog (Fig. 3.19), brought to screen by entering ds at the command line.

When Dynamic Input is in action, tools can be called by using any of the following methods:

1. By entering the name of the tool at the command line.
2. By entering the abbreviation for a tool name at the command line.
3. By selecting the tool's icon from a toolbar.

Fig. 3.19 Settings for DYN can be made in the Drafting Settings dialog
4. By selecting the tool's icon from a panel.
5. By selecting the tool's name from a drop-down menu.

When Dynamic Input is active and a tool is called, command prompts appear in a tooltip at the cursor position. Fig. 3.20 shows the tooltip appearing at the cursor position when the Line tool icon in the Home/ Draw panel is clicked.

Fig. 3.20 The prompt appearing on screen when the Line tool is selected

To commence drawing a line, either move the cursor under mouse control to the desired coordinate point and left-click as in Fig. 3.21, or enter the required x, y coordinates at the keyboard (Fig. 3.22) and left-click. To continue drawing with Line drag the cursor to a new position and either left-click at the position when the coordinates appear as required (Fig. 3.22), or enter a required length at the keyboard, which appears in the length box followed by a left-click (Fig. 3.23).

Fig. 3.21 Drag the cursor to the required point and left-click

Fig. 3.22 Enter coordinates for the next point and left-click

Fig. 3.23 Enter length at keyboard and right-click

Dynamic Input - first example - Polyline

When using Dynamic Input the selection of a prompt can be made by pressing the down key of the keyboard (Fig. 3.24) which causes a pop-up menu to appear. A click on the required prompt in such a pop-up menu will make that prompt active.

1. Select Polyline from the Home/Draw panel (Fig. 3.25).

Fig. 3.25 Selecting Polyline from the Home/Draw panel
2. To start the construction click at any point on screen. The prompt for the polyline appears with the coordinates of the selected point showing. Left-click to start the drawing (Fig. 3.26).

Fig. 3.26 Dynamic Input - first example - Polyline - the first prompt
3. Move the cursor and press the down key of the keyboard. A pop-up menu appears from which a prompt selection can be made. In the menu click Width (Fig. 3.27).

Fig. 3.27 Dynamic Input - first example - Polyline - click Width in the pop-up menu
4. Another prompt field appears. At the keyboard enter the required width and right-click. Then left-click and enter ending width or right-click if the ending width is the same as the starting width (Fig. 3.28).

Specify starting width <0>: 1 |
Specify ending width <1>: 1
Fig. 3.28 Dynamic Input - first example - Polyline - entering widths
5. Drag the cursor to the right until the dimension shows the required horizontal length and left-click (Fig. 3.29).

Fig. 3.29 Dynamic Input - first example - Polyline - the horizontal length
6. Drag the cursor down until the vertical distance shows and left-click (Fig. 3.30).

Fig. 3.30 Dynamic Input - first example - Polyline - the vertical height
7. Drag the cursor to the left until the required horizontal distance is showing and right-click (Fig. 3.31).

Fig. 3.31 Dynamic Input - first example - Polyline - the horizontal distance
8. Press the down key of the keyboard and click Close in the menu (Fig. 3.32). The rectangle completes.

Fig. 3.32 Dynamic Input - first example - Polyline - selecting Close from the pop-up menu

Fig. 3.33 shows the completed drawing.

Fig. 3.33 Dynamic Input - first example - Polyline

Dynamic Input - second example - Zoom

1. Click the Zoom icon in the status bar. The first Zoom prompt appears (Fig. 3.34).

Fig. 3.34 Dynamic Input - second example - Zoom - click the Zoom icon.
The prompts then appear.
2. Right-click and press the down button of the keyboard. The pop-up list Fig. 3.35 appears from which a Zoom prompt can be selected.

Fig. 3.35 Dynamic Input - second example - Zoom - the pop-up menu appearing with a rightclick and pressing the down keyboard button
3. Carry on using the Zoom tool as described in Chapter 4.

Dynamic Input - third example - dimensioning

When using DYN, tools can equally well be selected from a toolbar. Fig. 3.36 shows the Linear tool from the Home/Annotation panel selected when dimensioning a drawing.

Fig. 3.36 Selecting Linear from the Home/Annotation panel

A prompt appears asking for the first point. Move the cursor to the second point, another prompt appears (Fig. 3.37). Press the down button of the keyboard and the pop-up list (Fig. 3.37) appears from which a selection can be made.

Fig. 3.37 Dynamic Input - third example - dimensioning - the pop-up menu associated with Linear dimensioning

Dynamic Input using 3D tools

The Dynamic Input method of constructing 2D drawings can equally well be used when constructing 3D solid model drawings (See Chapter 12 onwards).

Why use Dynamic Input?

Fig. 3.39 The Rectangle tool from the Home/Draw panel

Examples of using other Draw tools

Polygon tool (Fig. 3.38)

1. Call the Polygon tool - either with a click on its tool icon in the Home/ Draw panel (Fig. 3.1, page 50), from the Draw drop-down menu, from
the Draw toolbar or by entering pol or polygon at the command line. Draw panel (Fig. 3.1, page 50), from the Draw drop-down menu, from
the Draw toolbar or by entering pol or polygon at the command line. No matter how the tool is called, the command line shows:
2. In the same manner construct a $\mathbf{5}$-sided polygon of centre $\mathbf{2 0 0}, \mathbf{2 1 0}$ and of radius $\mathbf{6 0}$.
3. Then, construct an 8 -sided polygon of centre $\mathbf{3 3 0 , 2 1 0}$ and radius $\mathbf{6 0}$.
4. Repeat to construct a 9 -sided polygon circumscribed about a circle of
radius $\mathbf{6 0}$ and centre $\mathbf{6 0 , 8 0}$.
5. Construct yet another polygon with $\mathbf{1 0}$ sides of radius $\mathbf{6 0}$ and of centre
$\mathbf{2 0 0}, \mathbf{8 0}$.
6. Finally another polygon circumscribing a circle of radius $\mathbf{6 0}$, of centre 330,80 and sides 12.
Some operators may prefer constructing drawings without having to make entries at the command line in response to tool prompts. By using DYN, drawings, whether in 2D or in 3D format, can be constructed purely from operating and moving the mouse, entering coordinates at the command line and pressing the down key of the keyboard when necessary.
```
Command:_polygon Enter number of sides \(<4>\) : 6
Specify center of polygon or [Edge]: 60,210
Enter an option [Inscribed in circle/Circumscribed about circle] <I> :right-click(accept
Inscribed)
Specify radius of circle: 60
Command:
Specify center of polygon or [Edge]: 60,210
Enter an option [Inscribed in circle/Circumscribed
    about circle] <I> :right-click(accept
    Inscribed)
Specify radius of circle: 60
ommand:
```

The result is shown in Fig. 3.38.

Rectangle tool - first example (Fig. 3.40)

Call the Rectangle tool - either with a click on its tool icon in the Home/ Draw panel (Fig. 3.39) or by entering rec or rectangle at the command line. The tool can be also called from the Draw drop-down menu or Draw toolbar. The command line shows:

Command:_rectang
Specify first corner point or [Chamfer/Elevation/
Fillet/Thickness/Width]: 25,240
Specify other corner point or [Area/Dimensions/
Rotation]: 160,160
Command:

Circumscribing

Fig. 3.38 First example - Polygon tool

Rectangle tool - second example (Fig. 3.40)

Command:_rectang
[prompts]: c (Chamfer)
Specify first chamfer distance for rectangles $<0>$: 15
Specify first chamfer distance for rectangles <15> :right-click
Specify first corner point: 200,240
Specify other corner point: 300,160
Command:

Rectangle tool - third example (Fig. 3.40)

Command: _rectang
Specify first corner point or [Chamfer/Elevation/
Fillet/Thickness/Width]: f (Fillet)
Specify fillet radius for rectangles $\langle 0\rangle$: 15

Fig. 3.40 Examples - Rectangle tool
Specify first corner point or [Chamfer/Elevation/ Fillet/Thickness/Width]: w (Width)
Specify line width for rectangles <0> : 1 Specify first corner point or [Chamfer/Elevation/ Fillet/Thickness/Width]: 20,120
Specify other corner point or [Area/Dimensions/ Rotation]: 160,30
Command:
Rectangle - fourth example (Fig. 3.40)
Command:_rectang
Specify first corner point or [Chamfer/Elevation/
Fillet/Thickness/Width]: w (Width)
Specify line width for rectangles <0> : 4
Specify first corner point or [Chamfer/Elevation/ Fillet/Thickness/Width]: c (Chamfer)
Specify first chamfer distance for rectangles <0> : 15
Specify second chamfer distance for rectangles <15> :right-click
Specify first corner point: 200,120
Specify other corner point: 315,25
Command:

The Polyline Edit tool

The Polyline Edit tool is a valuable tool for the editing of polylines.

Examples - Polyline Edit (Fig 3.43)

1. With the Polyline tool construct the outlines $\mathbf{1}$ to $\mathbf{6}$ of Fig. 3.41.
1

2

5 \qquad

6

Fig. 3.41 Examples - Edit Polyline - the plines to be edited
2. Call the Edit Polyline tool either from the Home/Modify panel (Fig. 3.42) or from the Modify drop-down menu, or by entering pe or pedit at the command line, which then shows:

Fig. 3.42 Calling Edit Polyline from the Home/Modify panel

```
Command:enter pe
PEDIT Select polyline or [Multiple]: pick pline 2
Enter an option [Open/Join/Width/Edit vertex/
    Fit/Spline/Decurve/Ltype gen/Reverse/Undo]: w
    (Width)
Specify new width for all segments: 2
```

```
Enter an option [Open/Join/Width/
    Edit vertex/Fit/Spline/Decurve/Ltype
    gen/Reverse/Undo]:right-click
Command:
```

3. Repeat with pline $\mathbf{3}$ and pedit to Width $=\mathbf{1 0}$.
4. Repeat with line $\mathbf{4}$ and enter \mathbf{s} (Spline) in response to the prompt line:

Enter an option [Open/Join/Width/Edit vertex/Fit/ Spline/Decurve/Ltype gen/Reverse/Undo]: enter s
5. Repeat with pline $\mathbf{5}$ and enter \mathbf{j} in response to the prompt line:

Enter an option [Open/Join/Width/Edit vertex/Fit/

 Spline/Decurve/Ltype gen/Undo]: enter jThe result is shown in pline 6 .
The resulting examples are shown in Fig. 3.43.
1

4

5

Fig. 3.43 Examples - Polyline Edit

Example - Multiple Polyline Edit (Fig. 3.44)

1. With the Polyline tool construct the left-hand outlines of Fig. 3.44.
2. Call the Edit Polyline tool. The command line shows:

Command:enter pe
PEDIT Select polyline or [Multiple]: m (Multiple) Select objects:pick any one of the lines or arcs of the left-hand outlines of Fig. 6.161 found Select objects:pick another line or arc 1 found 2 total

Continue selecting lines and arcs as shown by the pick boxes of the lefthand drawing of Fig. 3.44 until the command line shows:

```
Select objects:pick another line or arc 1 found 24
    total
Select objects:right-click
[prompts]: w (Width)
Specify new width for all segments: 1.5
Convert Arcs, Lines and Splines to polylines [Yes/
No]? <Y > :right-click
[prompts]:right-click
```

Command:

The result is shown in the right-hand drawing of Fig. 3.44.

Fig. 3.44 Example - Multiple Polyline Edit

Transparent commands

When any tool is in operation it can be interrupted by prefixing the interrupting command with an apostrophe (${ }^{6}$). This is particularly useful when wishing to zoom when constructing a drawing (see page 82). As an example when the Line tool is being used:

Command: line
Specify first point: 100,120
Specify next point: 190,120
Specify next point:enter 'z (Zoom)

```
    > > Specify corner of window or [prompts]:pick
    > > > > Specify opposite corner:pick
Resuming line command.
Specify next point:
```

And so on. The transparent command method can be used with any tool.

The set variable PELLIPSE

Many of the operations performed in AutoCAD are carried out under settings of set variables. Some of the numerous set variables available in AutoCAD 2010 will be described in later pages. The variable PELLIPSE controls whether ellipses are drawn as splines or as polylines. It is set as follows:

Command:enter pellipse right-click
Enter new value for PELLIPSE $<0>$:enter 1 right-click
Command:

And now when ellipses are drawn they are plines. If the variable is set to $\mathbf{0}$, the ellipses will be splines. The value of changing ellipses to plines is that they can then be edited using the Polyline Edit tool.

REVISION NOTES

The following terms have been used in this chapter:
Field - a part of a window or of a dialog in which numbers or letters are entered or which can be read.
Pop-up list - a list brought in-screen with a click on the arrow often found at the right-hand end of a field.
Object - a part of a drawing which can be treated as a single object. For example a line constructed with the Line tool is an object; a rectangle constructed with the Polyline tool is an object; an arc constructed with the Arc tool is an object. It will be seen in a later chapter (Chapter 9) that several objects can be formed into a single object.
Toolbar - a collection of tool icons all of which have similar functions. For example in the Classic AutoCAD workspace the Draw toolbar contains tool icons for those tools which are used for drawing and the Modify toolbar contains tool icons of those tools used for modifying parts of drawings.
Ribbon palettes - when working in either of the 2 D Drafting and Annotation, the Classic AutoCAD or the 3D Modeling workspace, tool icons are held in panels in the Ribbon.
Command line - a line in the command palette which commences with the word Command:

REVISION NOTES (CONTINUED)

Snap Mode, Grid Display and Object Snap can be toggled with clicks on their respective buttons in the status bar. These functions can also be set with function keys - Snap Mode - F9; Grid Display - F7; Object Snap - F3.

Object Snaps ensure accurate positioning of objects in drawings.
Object Snap abbreviations can be used at the command line rather than setting ON in the Drafting Settings dialog.
Dynamic input allows constructions in any of the three AutoCAD 2010 workspaces or in a full-screen workspace, without having to use the command palette for entering the initials of command line prompts.

Notes on tools

There are two types of tooltip. When the cursor under mouse control is paced over a tool icon, the first (a smaller) tooltip is seen. If the cursor is held in position for a short time a second (larger tooltip) is seen.

Polygons constructed with the Polygon tool are regular polygons - the edges of the polygons are all the same length and the angles are of the same degrees.

Polygons constructed with the Polygon tool are plines, so can be changed by using the Edit Polyline tool.

The easiest method of calling the Edit Polyline tool is to enter pe at the command line.

The Multiple prompt of the pedit tool saves considerable time when editing a number of objects in a drawing.

Transparent commands can be used to interrupt tools in operation by preceding the interrupting tool name with an apostrophe (${ }^{\circ}$).

Ellipses drawn when the variable PELLIPSE is set to $\mathbf{0}$ are splines, when PELLIPSE is set to $\mathbf{1}$, ellipses are polylines. When ellipses are in polyline form they can be modified using the pedit tool.

Exercises

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-1-85617-868-6

1. Using the Line and Arc tools, construct the outline given in Fig. 3.45.

Fig. 3.45 Exercise 1
2. With the Line and Arc tools, construct the outline Fig. 3.46.

Fig. 3.46 Exercise 2
3. Using the Ellipse and Arc tools construct the drawing Fig. 3.47.

Fig. 3.47 Exercise 3
4. With the Line, Circle and Ellipse tools construct Fig. 3.48.

Fig. 3.48 Exercise 4
5. With the Ellipse tool, construct the drawing Fig. 3.49.

Fig. 3.49 Exercise 5
6. Fig. 3.50 shows a rectangle in the form of a square with hexagons along each edge. Using the Dimensions prompt of the Rectangle tool construct the square. Then, using the Edge prompt of the Polygon tool, add the four hexagons. Use the Object Snap endpoint to ensure the polygons are in their exact positions.

Fig. 3.50 Exercise 6
7. Fig. 3.51 shows seven hexagons with edges touching. Construct the inner hexagon using the Polygon tool, then with the aid of the Edge prompt of the tool, add the other six hexagons.

8. Fig. 3.52 was constructed using only the Rectangle tool. Make an exact copy of the drawing using only the Rectangle tool.

Fig. 3.52 Exercise 8
9. Construct the drawing Fig. 3.53 using the Line and Arc tools. Then, with the aid of the Multiple prompt of the Edit Polyline tool change the outlines into plines of Width $=\mathbf{1}$.

10. Construct Fig. 3.54 using the Line and Arc tools. Then change all widths of lines and arcs to a width of $\mathbf{2}$ with Edit Polyline.

Fig. 3.54 Exercise 10

Fig. 3.53 Exercise 9
11. Construct Fig. 3.55 using the Rectangle, Line and Edit Polyline tools.

Fig. 3.55 Exercise 11

Chapter 4

Zoom, pan and templates

AIMS OF THIS CHAPTER

The aims of this chapter are:

1. To demonstrate the value of the Zoom tools.
2. To introduce the Pan tool.
3. To describe the value of using the Aerial View window in conjunction with the Zoom and Pan tools.
4. To update the acadiso.dwt template.
5. To describe the construction and saving of drawing templates.

The use of the Zoom tools allows not only the close inspection of the most minute areas of a drawing in the AutoCAD 2010 drawing area, but allows the accurate construction of very small details in a drawing.

The Zoom tools can be called by clicking the Zoom button in the status bar (Fig. 4.1) or selecting from the View/Zoom drop down menu. However by far the easiest and quickest method of calling the Zoom is to enter \mathbf{z} at the command line as follows:

Command: enter z right-click
ZOOM Specify corner of window, enter a scale factor ($n \mathrm{X}$ or nXP) or [All/Center/Dynamic/Extents/ Previous/Scale/Window/Object] <real time >:

View

Regen
Regen: All

Fig. 4.1 Calling Zoom - by clicking the Zoom button in the status bar or from the View drop-down menu

This allows the different zooms:
Realtime - selects parts of a drawing within a window.
All - the screen reverts to the limits of the template.
Center - the drawing centres itself around a picked point.

Dynamic - a broken line surrounds the drawing which can be changed in size and repositioned to another part of the drawing.
Extents - the drawing fills the AutoCAD drawing area.
Previous - the screen reverts to its previous zoom.
Scale - entering a number or a decimal fraction scales the drawing.
Window - the parts of the drawing within a picked window appears on screen. The effect is the same as using real time.
Object - pick any object on screen and the object zooms.
The operator will probably be using Realtime, Window and Previous zooms most frequently.

Figures 4.2-4.4 show a drawing which has been constructed, a Zoom
Window of part of the drawing allowing it to be checked for accuracy, and a Zoom Extents respectively.

It will be found that the Zoom tools are among those most frequently used when working in AutoCAD 2010.

Fig. 4.2 Drawing to be acted upon by the Zoom tool

Fig. 4.3 A Zoom Window of part of the drawing Fig. 4.2

Fig. 4.4 A Zoom Extents of the drawing Fig. 4.2

The Aerial View window

Enter dsviewer at the command line and the Aerial View window appears - usually in the bottom right-hand corner of the AutoCAD 2010 window. The Aerial View window shows the whole of a drawing, even if larger than the limits. The Aerial View window is of value when dealing with large drawings - it allows that part of the window on screen to be shown in relation to the whole of the drawing. Fig. 4.5 is a three-view orthographic projection of a small bench vice.

Fig. 4.5 The drawing used to illustrate Figures 4.6 and 4.7

Fig. 4.6 shows a Zoom Window of the drawing Fig. 4.5 including the Aerial View Window. The area of the drawing within the Zoom Window in the drawing area is bounded by a thick green line in the Aerial View window.

The Pan tool
The Pan tools can be called with a click on the Pan button in the status bar, from the Pan sub-menu of the View drop-down menu or by entering \mathbf{p} at the command line. When the tool is called, the cursor on screen changes to an icon of a hand. Dragging the hand across screen under mouse movement allows various parts of the drawing not in the AutoCAD drawing area to be viewed. As the dragging takes place, the green rectangle in the Aerial View window moves in sympathy (see Fig. 4.7). The Pan tool allows any part of the drawing to be viewed and/or modified. When that part of the drawing which is required is on screen a right-click calls up the menu as shown in Fig. 4.7, from which either the tool can be exited, or other tools can be called.

Fig. 4.7 The Pan tool in action showing a part of the drawing, while the whole drawing is shown in the Aerial View window

Notes

1. If using a mouse with a wheel both zooms and pans can be performed with the aid of the wheel. See page 8 .
2. The Zoom tools are important in that they allow even the smallest parts of drawings to be examined and, if necessary, amended or modified.
3. The Zoom tools can be called with a click on the Zoom button in the status bar, from the Zoom toolbar, from the sub-menu of the View dropdown menu or by entering $\mathbf{z o o m}$ or \mathbf{z} at the command line. The easiest method is to enter \mathbf{z} at the command line followed by a right-click.
4. Similarly the easiest method of calling the Pan tool is to enter \mathbf{p} at the command line followed by a right-click.
5. When constructing large drawings, the Pan tool and the Aerial View window are of value for allowing work to be carried out in any part of a drawing, while showing the whole drawing in the Aerial View window.

Drawing templates

In Chapters 1 to 3, drawings were constructed in the template acadiso. dwt which loaded when AutoCAD 2010 was opened. The default acadiso
template has been amended to Limits set to 420,297 (coordinates within which a drawing can be constructed), Grid Display set to 10, Snap Mode set to 5, and the drawing area Zoomed to All.

Throughout this book most drawings will be based on an A3 sheet, which measures 420 units by 297 units (the same as Limits).

Note

As mentioned on page before, if others are using the computer on which drawings are being constructed, it is as well to save the template being used to another file name or, if thought necessary to a floppy disk or other temporary type of disk. A file name My_template.dwt, as suggested earlier, or a name such as book_template can be given.

Adding features to the template

Four other features will now be added to our template:
Text style - set in the Text Style dialog.
Dimension style - set in the Dimension Style Manager dialog.
Shortcutmenu variable - set to $\mathbf{0}$.
Layers - set in the Layer Properties Manager dialog.

Setting text

1. At the command line:

Command:enter st (Style) right-click
2. The Text style dialog appears (Fig. 4.8). In the dialog, enter $\mathbf{6}$ in the Height field. Then left-click on Arial in the Font name pop-up list. Arial font letters appear in the Preview area of the dialog.

Fig. 4.8 The Text Style dialog
3. Left-click the New button and enter Arial in the New text style subdialog which appears (Fig. 4.9) and click the OK button.
4. Left-click the Set Current button of the Text Style dialog.
5. Left-click the Close button of the dialog.

Fig. 4.9 The New Text Style sub-dialog

Setting dimension style

Settings for dimensions require making entries in a number of sub-dialogs in the Dimension Style Manager. To set the dimensions style:

1. At the command line:

Command:enter d right-click
And the Dimension Style Manager dialog appears (Fig. 4.10).

Fig. 4.10 The Dimension Style Manager dialog
2. In the dialog, click the Modify... button.
3. The Modify Dimension Style dialog appears (Fig. 4.11). A number of tabs show at the top of the dialog. Click the Lines tab and make settings as shown in Fig. 4.11. Then click the OK button of that dialog.

Fig. 4.11 The setting for Lines in the Modify Dimension Style dialog
4. The original Dimension Style Manager reappears. Click its Modify button again.
5. The Modify Dimension Style dialog reappears (Fig. 4.12). Click the Symbols and Arrows tab. Set Arrow size to 6.
6. Then click the Text tab. Set Text style to Arial, set Color to Magenta, set Text Height to $\mathbf{6}$ and click the ISO check box in the bottom righthand corner of the dialog.
7. Then click the Primary Units tab and set the units Precision to $\mathbf{0}$, that is no units after decimal point and Decimal separator to Period. Click the sub-dialogs OK button (Fig. 4.12).
8. The Dimension Styles Manager dialog reappears showing dimensions, as they will appear in a drawing, in the Preview of my-style box. Click the New... button. The Create New Dimension Style dialog appears (Fig. 4.13).
9. Enter a suitable name in the New style name field - in this example this is My-style. Click the Continue button and the Dimension Style Manager appears (Fig. 4.14). This dialog now shows a preview of the My-style dimensions. Click the dialog's Set Current button, followed by another click on the Close button (Fig. 4.14).

Fig. 4.12 Setting Primary Units in the Dimension Style Manager

Fig. 4.13 The Create New Dimension Style dialog

Fig. 4.14 The Dimension Style Manager reappears. Click the Set Current and Close buttons

| Enter |
| :--- | :--- |
| Cancel |
| Recent Input |
| Undo |
| Snap Overrides |
| 8 Pan |
| Zoom |
| SteeringWheels |
| 国 QuickCalc |

Fig. 4.15 The rightclick menu

Setting the shortcutmenu variable

Call the line tool, draw a few lines and then right-click. The right-click menu shown in Fig. 4.15 may well appear. The menu will also appear when any tool is called. Some operators prefer using this menu when constructing drawings. To stop this menu appearing:
Command:enter shortcutmenu right-click
Enter new value for SHORTCUTMENU <12>: 0
Command:
And the menu will no longer appear when a tool is in action.

Setting layers

1. At the command line enter layer followed by a right-click. The Layer Properties Manager palette appears (Fig. 4.16).
2. Click the New Layer icon. Layer1 appears in the layer list. Overwrite the name Layer 1 entering Centre.

Fig. 4.16 The Layer Properties Manager palette
3. Repeat step $\mathbf{2}$ four times and make four more layers entitled Construction, Dimensions, Hidden and Text.
4. Click one of the squares under the Color column of the dialog. The Select Color dialog appears (Fig. 4.17). Double-click on one of the colours in the Index Color squares. The selected colour appears against the layer name in which the square was selected. Repeat until all 5 new layers have a colour.
5. Click on the linetype Continuous against the layer name Centre. The Select Linetype dialog appears (Fig. 4.18). Click its Load ... button and from the Load or Reload Linetypes dialog double-click CENTER2. The dialog disappears and the name appears in the Select Linetype dialog. Click the OK button and the linetype CENTER2 appears against the layer Centre.

Fig. 4.17 The Select Color dialog

Fig. 4.18 The Select Linetype dialog
6. Repeat with layer Hidden, load the linetype HIDDEN2 and make the linetype against this layer HIDDEN2.
7. Click on the any of the lineweights in the Layer Properties Manager. This brings up the Lineweight dialog (Fig. 4.19). Select the lineweight

Fig. 4.19 The Lineweight dialog
0.3. Repeat the same for all the other layers. Then click the Close button of the Layer Properties Manager.

Saving the template file

1. Left-click on Save As in the menu appearing with a left-click on the AutoCAD icon at the top left-hand corner of the screen (Fig. 4.20).

Fig. 4.20 Calling Save As
2. In the Save Drawing As dialog which comes on screen (Fig. 4.21), click the arrow to the right of the Files of type field and in the pop-up list associated with the field click on AutoCAD Drawing Template (*.dwt). The list of template files in the AutoCAD 2010/Template directory appears in the file list.
3. Click on acadiso in the file list, followed by a click on the Save button.
4. The Template Option dialog appears. Make entries as suggested in Fig. 4.22, making sure that Metric is chosen from the pop-up list.

The template now saved can be opened for the construction of drawings as needed. Now when AutoCAD 2010 is opened again the template acadiso. dwt appears on screen.

Fig. 4.21 Saving the template to the name acadiso.dwt

Fig 2.22 The Template Description dialog

Note

Please remember that if others are using the computer it is advisable to save the template to a name of your own choice.

Another template

A3_template - Fig. 4.25

In the Select Template dialog, a click on any of the file names, causes a preview of the template to appear in the Preview box of the dialog, unless the template is free of information - as is acadiso.dwt. To construct another template which includes a title block and other information based on the acadiso.dwt template:

1. In an acadiso.dwt template construct a border and title block.
2. Click the Layout1 button (Fig. 4.23). The screen changes to a Paper Space setting.
3. Zoom to Extents.

Fig. 4.23 The Layout1 button
4. It is suggested this template be saved as a Paper Space template with the name A3_template.dwt (Fig. 4.24).

Fig. 4.24 The A3_template.dwt

Notes

1. The outline for this A3 template is a pline from $\mathbf{0 , 2 9 0}$ to $\mathbf{4 2 0 , 2 9 0}$ to $\mathbf{4 2 0 , 0}$ to $\mathbf{0 , 0}$ to $\mathbf{2 9 0 , 0}$ and of width $\mathbf{0 . 5}$.
2. The upper line of the title block is a pline from $\mathbf{0 , 2 0}$ to $\mathbf{4 2 0 , 2 0}$.
3. Paper Space is two-dimensional.
4. Further uses for Layouts and Pspace are given in Chapter 19.

The AutoCAD Classic workspace

It should be noted that any of the drawings described throughout Part 1 - 2D Design of this book could equally as well have been constructed in the AutoCAD Classic workspace as in the 2D Drafting \& Annotation workspace. Tools could as well be selected in the toolbars: Draw - docked left, Modify - docked right and Standard - docked top, as can be seen in Fig. 4.25.

Fig. 4.25 The AutoCAD Classic workspace

REVISION NOTES

1. The Zoom tools are important in that they allow even the smallest parts of drawings to be examined and, if necessary, amended or modified.
2. The Zoom tools can be called with a click on the Zoom button in the status bar, from the Zoom toolbar, from the sub-menu of the View drop-down menu, or by entering z
or zoom at the command line. The easiest method is to enter \mathbf{z} at the command line followed by a right-click.
3. There are five methods of calling tools for use - selecting a tool icon in a panel from a group of panels shown as tabs in the Ribbon; selecting a tool from a toolbar; entering the name of a tool in full at the command line; entering an abbreviation for a tool at the command line; selecting a tool from a drop-down menu.
4. When constructing large drawings, the Pan tool and the Aerial View window are of value for allowing work to be carried out in any part of a drawing, while showing the whole drawing in the Aerial View window.
5. An A3 sheet of paper is 420 mm by 297 mm . If a drawing constructed in the template acadiso.dwt described in this book is printed/plotted full size (scale 1:1), each unit in the drawing will be 1 mm in the print/plot.
6. When limits are set it is essential to call Zoom followed by a (All) to ensure that the limits of the drawing area are as set.
7. If the right-click menu appears when using tools, the menu can be aborted if required by setting the SHORTCUTMENU variable to $\mathbf{0}$.

Exercises

If you have saved drawings constructed either by following the worked examples in this book or by answering exercises in Chapters 2 and 3, open some of them and practise zooms and pans.

Chapter 5

The Modify tools

AIM OF THIS CHAPTER

The aim of this chapter is to describe the uses of tools for modifying parts of drawings.

Introduction

Fig. 5.1 The Modify tool icons in the Home/ Modify panel

The Modify tools are among those most frequently used. The tools are found in the Home/Modify panel. A click on the arrow in the Home/ Modify panel brings down a further set of tool icons (Fig. 5.1). They can also be selected from the Modify toolbar (Fig. 5.2) or from the Modify drop-down menu.

Using the Erase tool from Home/Modify was described in Chapter 2. Examples of tools other than the Explode follow. See also Chapter 9 for Explode.

Fig. 5.2 The Modify toolbar

First example - Copy (Fig. 5.5)

1. Construct Fig. 5.3 using Polyline. Do not include the dimensions.
2. Call the Copy tool - either left-click on its tool icon in the Home/ Modify panel (Fig. 5.4), pick Copy from the Modify toolbar, or enter cp or copy at the command line.

Fig. 5.3 First example - Copy Object - outlines
The command line shows:
Command: _copy
Select objects:pick the cross 1 found Select objects:right-click
Current settings: Copy mode $=$ Multiple
Specify base point or [Displacement/Mode]
<Displacement> :pick
Specify second point or [Exit/Undo]:pick

Specify second point or
[Exit/Undo] < Exit > :right-click
Command:
The result is given in Fig. 5.5.

Fig. 5.4 The Copy tool from the Home/Modify panel

Fig. 5.5 First example - Copy

Second example - Multiple copy (Fig. 5.6)

1. Erase the copied object.
2. Call the Copy tool. The command line shows:

Command: _copy
Select objects:pick the cross 1 found
Select objects:right-click
Current settings: Copy mode $=$ Multiple
Specify base point or [Displacement/Mode]
<Displacement > :pick
Specify second point or <use first point as
displacement > :pick
Specify second point or [Exit/Undo] <Exit $>$:pick
Specify second point or [Exit/Undo] <Exit $>$:pick
Specify second point or [Exit/Undo] <Exit $>$: e (Exit)
Command:
The result is shown in Fig. 5.6.

Fig. 5.6 Second example - Copy - Multiple copy

The Mirror tool

First example - Mirror (Fig. 5.9)

1. Construct the outline Fig. 5.7 using the Line and Arc tools.
2. Call the Mirror tool - left-click on its tool icon in the Home/Modify panel (Fig. 5.8), pick Mirror from the Modify toolbar or from the Modify drop-down menu, or enter mi or mirror at the command line. The command line shows:
Command:_mirror
Select objects:pick first cornerSpecify opposite corner:pick 7 found
Select objects:right-click
Specify first point of mirror line:pick Specify second point of mirror line:pick
Erase source objects [Yes/No] <N > :right-click Command:

The result is shown in Fig. 5.9.

Fig. 5.7 First example Mirror - outline

Fig. 5.8 The Mirror tool from the Modify toolbar

Fig. 5.9 First example - Mirror

Second example - Mirror (Fig. 5.10)

1. Construct the outline shown in the dimensioned polyline in the upper drawing of Fig. 5.10.
2. Call Mirror and using the tool three times complete the given outline. The two points shown in Fig. 5.10 are to mirror the right-hand side of the outline.

Fig. 5.10 Second example - Mirror

Third example - Mirror (Fig. 5.11)

Fig. 5.11 Third example - Mirror

If text is involved when using the Mirror tool, the set variable
MIRRTEXT must be set correctly. To set the variable:
Command: mirrtext
Enter new value for MIRRTEXT <1> : 0
Command:
If set to $\mathbf{0}$ text will mirror without distortion. If set to $\mathbf{1}$ text will read backwards as indicated in Fig. 5.11.

The Offset tool

Examples - Offset (Fig. 5.14)

1. Construct the four outlines shown in Fig. 5.13.
2. Call the Offset tool - left-click on its tool icon in the Home/Modify panel (Fig. 5.12), pick the tool from the Modify toolbar, pick the tool name in the Modify drop-down menu, or enter $\mathbf{0}$ or offset at the command line. The command line shows:

Command:_offset
Current settings: Erase source = No
Layer $=$ Source OFFSETGAPTYPE $=0$
Specify offset distance or [Through/Erase/Layer]
<Through> : 10
Select object to offset or [Exit/Undo]
<Exit> :pick drawing 1
Specify point on side to offset or [Exit/Multiple/
Undo] <Exit> :pick inside the rectangle
Select object to offset or [Exit/Undo] <Exit> : e (Exit)
Command:

Fig. 5.12 The Offset tool from the Home/Modify panel

Fig. 5.13 Examples - Offset - outlines
3. Repeat for drawings $\mathbf{2}, \mathbf{3}$ and $\mathbf{4}$ in Fig. 5.12 as shown in Fig. 5.14.

Offset twice by 15

Fig. 5.14 Examples - Offset

The Array tool

Arrays can be in either a Rectangular form or in a Polar form as shown in the examples below.

First example - Rectangular Array (Fig. 5.17)

Fig. 5.15 First example - Array drawing to be arrayed

1. Construct the drawing Fig. 5.15.
2. Call the Array tool - either click Array in the Modify drop-down menu (Fig. 5.16), from the Home/Modify panel, pick the Array tool icon from the Modify toolbar, or enter ar or array at the command line. The Array dialog appears (Fig. 5.17).
3. Make settings in the dialog:

Rectangular Array radio button set on (dot in button).
Row field - enter 5

Fig. 5.16 Selecting Array from the Modify drop-down menu

Fig. 5.17 First example - the Array dialog
Column field - enter 6
Row offset field - enter $\mathbf{- 5 0}$ (note the minus sign)
Column offset field - enter 50
4. Click the Select objects button and the dialog disappears. Window the drawing. A second dialog appears which includes a Preview $<$ button.
5. Click the Preview $<$ button. The dialog disappears and the following prompt appears at the command line:

Pick or press Esc to return to drawing or $<$ Rightclick to accept drawing> :
6. If satisfied right-click. If not, press the Esc key and make revisions to the Array dialog fields as necessary.

The resulting array is shown in Fig. 5.18.

Second example - Polar Array (Fig. 5.22)

1. Construct the drawing Fig. 5.19.
2. Call Array. The Array dialog appears. Make settings as shown in Fig. 5.20.
3. Click the Select objects button of the dialog and window the drawing. The dialog returns to screen. Click the Pick center point button (Fig. 5.21) and when the dialog disappears, pick a centre point for the array.
4. The dialog reappears. Click its Preview $<$ button. The array appears and the command line shows:
```
Pick or press Esc to return to drawing or <Right-
    click to accept drawing> :
```


Fig. 5.18 First example - Array

Fig. 5.19 Second example - the drawing to be arrayed

Fig. 5.20 Second example - Array - settings in the dialog
5. If satisfied right-click. If not, press the Esc key and make revisions to the Array dialog fields as necessary.

The resulting array is shown in Fig 5.22.

Fig. 5.21 Second example - Array - the Pick Center point button

Fig. 5.22 Second example - Array

The Move tool

Example - Move (Fig. 5.25)

1. Construct the drawing Fig. 5.23.

Fig. 5.23 Example - Move - drawing
2. Call Move - either click the Move tool icon in the Home/Modify panel (Fig. 5.24), pick Move from the Modify toolbar, pick Move from the Modify drop-down menu, or enter \mathbf{m} or move at the command line, which shows:

Command: move
Select objects:pick the middle shape in the drawing 1 found
Select objects:right-click
Specify base point or [Displacement]
<Displacement> :pick
Specify second point or <use first point as displacement> :pick
Command:

Fig. 5.24 The Move tool from the Home/Modify toolbar

The result is given in Fig. 5.25.

Fig. 5.25 Example - Move

The Rotate tool

When using the Rotate tool remember the default rotation of objects within AutoCAD 2010 is counterclockwise (anticlockwise).

Example - Rotate (Fig. 5.27)

1. Construct drawing 1 of Fig. 5.27 with Polyline. Copy the drawing 1 three times (Fig. 5.27).
2. Call Rotate - left-click on its tool icon in the Home/Modify panel (Fig. 5.26), pick its tool icon from the Modify toolbar, pick Rotate from the Modify drop-down menu, or enter ro or rotate at the command line. The command line shows:

Command:_rotate
Current positive angle in UCS: ANGDIR = countercl
ockwise ANGBASE $=0$
Select objects: window the drawing 3 found
Select objects:right-click
Specify base point:pick
Specify rotation angle or [Copy/Reference] $<0>$: 45
Command:
and the first copy rotates through the specified angle.
3. Repeat for drawings $\mathbf{3}$ and $\mathbf{4}$ rotating as shown in Fig. 5.27.

Fig. 5.26 The Rotate tool icon from the Home/Modify panel

Fig. 5.27 Example - Rotate

The Scale tool

Examples - Scale (Fig. 5.29)

1. Using the Rectangle and Polyline tools, construct drawing $\mathbf{1}$ of Fig. 5.29. The Rectangle fillets are R10. The line width of all parts is $\mathbf{1}$. Copy the drawing 3 times to give drawings $\mathbf{2 , 3}$ and 4.
2. Call Scale - left-click on its tool icon in the Home/Draw panel (Fig. 5.28), pick its tool icon in the Modify toolbar, pick Scale from the Modify drop-down menu, or click its tool in the Modify toolbar, or enter sc or scale at the command line which then shows:

Command:_scale
Select objects: window drawing 25 found
Select objects:right-click
Specify base point:pick
Specify scale factor or [Copy/Reference] <1> : 0.75
Command:

Fig. 5.28 The Scale tool icon from the Modify toolbar
3. Repeat for the other two drawings $\mathbf{3}$ and $\mathbf{4}$ scaling to the scales given with the drawings.

The results are shown in Fig. 5.29.

This tool is one which will be in frequent use when constructing drawings.

First example - Trim (Fig. 5.31)

1. Construct the drawing Original drawing in Fig. 5.31.
2. Call Trim - either left-click on its tool icon in the Home/Modify panel (Fig. 5.30), pick its tool icon in the Modify toolbar, pick Trim from the Modify drop-down menu, or enter $\mathbf{t r}$ or trim at the command line, which then shows:

Command: trim

Current settings: Projection UCS. Edge = Extend Select cutting edges...
Select objects or <select all> :pick the lefthand circle 1 found
Select objects to trim or shift-select to extend or [Fence/Project/Crossing/Edge/eRase// Undo]:pick one of the objects
Select objects to trim or shift-select to extend or [Fence/Crossing/Project/Edge/eRase/Undo:pick the second of the objects
Select objects to trim or shift-select to extend or [Project/Edge/Undo]:right-click
Command:

Fig. 5.30 The Trim tool icon from the Modify toolbar in the Home/Modify panel
3. This completes the First stage as shown in Fig. 5.31. Repeat the Trim sequence for the Second stage.
4. The Third stage drawing of Fig. 5.31 shows the result of the trims at the left-hand end of the drawing.
5. Repeat for the right-hand end. The final result is shown in the drawing labelled Result in Fig. 5.31.

Fig. 5.31 First example - Trim

Second example - Trim (Fig. 5.32)

1. Construct the left-hand drawing of Fig. 5.32.
2. Call Trim. The command line shows:

Command:_trim
Current settings: Projection UCS. Edge $=$ Extend Select cutting edges ...
Select objects or <select all> :pick the lefthand arc 1 found
Select objects:right-click
Select objects to trim or shift-select to extend or [Fence/Crossing/Project/Edge/eRase/Undo]: e (Edge)
Enter an implied edge extension mode [Extend/No extend] <No extend> : e (Extend)
Select objects to trim:pick
Select objects to trim:pick
Select objects to trim:right-click
Command:
3. Repeat for the other required trims. The result is given in Fig. 5.32.

Fig. 5.32 Second example - Trim

The Stretch tool

Examples - Stretch (Fig. 5.34)

As its name implies the Stretch tool is for stretching drawings or parts of drawings. The action of the tool prevents it from altering the shape of circles in any way. Only crossing or polygonal windows can be used to determine the part of a drawing which is to be stretched.

1. Construct the drawing labelled Original in Fig. 5.34, but do not include the dimensions. Use the Circle, Arc, Trim and Edit Polyline tools. The resulting outlines are plines of width $=1$. With the Copy tool make two copies of the drawing.

Note

In each of the three examples in Fig. 5.34, the broken lines represent the crossing windows required when Stretch is used.
2. Call the Stretch tool - either click on its tool icon in the Home/Modify panel (Fig. 5.33), left-click on its tool icon in the Modify toolbar, pick its name in the Modify drop-down menu, or enter \mathbf{s} or stretch at the command line, which shows:
Command:_stretch
Select objects to stretch by crossing-window or
crossing-polygon...
Select objects:enter c right-click
Specify first corner:pick Specify opposite corner:pick 1 found
Select objects:right-click

Fig. 5.33 The Stretch tool icon from the Home/Modify panel

```
Specify base point or [Displacement]
    <Displacement> :pick beginning of arrow
Specify second point of displacement or <use first
point as displacement> :drag in the direction
    of the arrow to the required second point and
    right-click
Command:
```


Notes

1. When circles are windowed with the crossing window no stretching can take place. This is why, in the case of the first example in Fig. 5.33, when the second point of displacement was picked, there was no result - the outline did not stretch.
2. Care must be taken when using this tool as unwanted stretching can occur.

Fig. 5.34 Examples - Stretch

The Break tool

Examples - Break (Fig. 5.36)

1. Construct the rectangle, arc and circle (Fig. 5.36).
2. Call Break - either click on its tool icon in the Home/Modify panel (Fig. 5.35), pick its tool icon in the Modify toolbar, click Break in the Modify drop-down menu, or enter br or break at the command line, which shows:

For drawings 1 and 2

Command:_break Select object:pick at the point Specify second break point or [First point]:pick Command:

Fig. 5.35 The Break tool icon from the Home/Modify panel

For drawing 3

Command:_break Select object pick at the point Specify second break point or [First point]: enter f right-click
Specify first break point:pick
Specify second break point:pick
Command:
The results are shown in Fig. 5.36.

Note

Remember the default rotation of AutoCAD 2010 is counterclockwise. This apples to the use of the Break tool.

Fig. 5.36 Examples - Break

The Join tool

The Join tool can be used to join plines providing their ends are touching; to join lines which are in line with each other; to join arcs and convert arcs to circles.

Examples - Join (Fig. 5.38)

1. Construct a rectangle from four separate plines - drawing 1 of Fig.
5.38. Construct two lines - drawing 2 of Fig. 5.38 and an arc - drawing 3 of Fig. 5.38.
2. Call the Join tool - either click on the Join tool icon in the Home/ Modify panel (Fig. 5.37), left-click its tool icon in the Modify toolbar, select Join from the Modify drop-down menu, or enter join or \mathbf{j} at the command line. The command line shows:

Command: _join Select source object:
Select objects to join to source:pick a pline 1 found
Select objects to join to source:pick another 1 found, 2 total
Select objects to join to source:pick another 1 found, 3 total
Select objects to join to source:right-click
3 segments added to polyline

Fig. 5.37 The Join tool icon from the Home/Modify panel
Command:right-click
JOIN Select source object:pick one of the lines Select lines to join to source:pick the other 1 found Select lines to join to source:right-click
1 line joined to source
Command:right-click
JOIN Select source object:pick the arc
Select arcs to join to source or [cLose]:enter
right-click
Arc converted to a circle.
Command:
The results are shown in Fig. 5.38

2

Result 2

Fig. 5.38 Examples - Join

The Extend tool

Examples - Extend (Fig. 5.40)

1. Construct plines and a circle as shown in the left-hand drawings of Fig. 5.40.
2. Call Extend - either click on the Extend tool icon in the Modify toolbar (Fig. 5.39), pick Extend from the Modify drop-down menu, or enter ex or extend at the command line which then shows:

Command: _extend
Current settings: Projection $=$ UCS Edge $=$ Extend Select boundary edges ...
Select objects or <select all> :pick 1 found Select objects:right-click
Select object to extend or shift-select to trim or [Fence/Crossing/Project/Edge/Undo]:pick
Repeat for each object to be extended. Then:
Select object to extend or shift-select to trim or [Fence/Crossing/Project/Edge/Undo]:right-click Command:

Fig. 5.39 The Extend tool icon in the Modify toolbar in the AutoCAD Classic workspace

The results are shown in Fig. 5.40.

Note

Observe the similarity of the Extend and No extend prompts with those of the Trim tool.

Fig. 5.40 Examples - Extend

The Fillet and Chamfer tools

These two tools can be called from the Home/Modify panel. There are similarities in the prompt sequences for these two tools. The major differences are that only one (Radius) setting is required for a fillet, but two (Dist1 and Dist2) are required for a chamfer. The basic prompts for both are:

Fillet

Command: fillet
Current settings: Mode $=$ TRIM, Radius $=1$
Select first object or [Polyline/Radius/Trim/
Multiple]:enter r (Radius) right-click
Specify fillet radius $<1>$: 15

Chamfer

Command:_chamfer
(TRIM mode) Current chamfer Dist1 = 1, Dist2 $=1$ Select first line or [Undo/Polyline/Distance/

Angle/Trim/Method/Multiple]:enter d (Distance) right-click
Specify first chamfer distance <1> : 10
Specify second chamfer distance
<10> :right-click

Examples - Fillet (Fig. 5.42)

1. Construct three rectangles 100 by 60 using either the Line or the Polyline tool (Fig. 5.42).
2. Call Fillet - click the arrow to the right of the tool icon in the Home/ Modify panel and select Fillet from the menu which appears (Fig. 5.41), pick its tool icon in the Modify toolbar, pick Fillet from the Modify drop-down menu, or enter \mathbf{f} or fillet at the command line which then shows:

Command: fillet
Current settings: Mode $=$ TRIM, Radius $=1$
Select first object or [Polyline/Radius/Trim/
Multiple]: r (Radius)
Specify fillet radius <0> : 15
Select first object or [Undo/Polyline/Radius/Trim/ Multiple]:pick
Select second object or shift-select to apply corner:pick
Command:

Fig. 5.41 Select Fillet from the menu in the Home/Modify panel
Three examples are given in Fig. 5.42.

Fig. 5.42 Examples - Fillet

Examples - Chamfer (Fig. 5.44)

1. Construct three rectangles 100 by 60 using either the Line or the Polyline tool.
2. Call Chamfer - click the arrow to the right of the tool icon in the Home/Modify panel and select Chamfer from the menu which appears (Fig. 5.43), click on its tool icon in the Modify toolbar, pick Chamfer from the Modify drop-down menu, or enter cha or chamfer at the command line which then shows:

Command:_chamfer
(TRIM mode) Current chamfer Dist1 = 1, Dist2 = 1 Select first line or
[Undo/Polyline/Distance/Angle/Trim/
Method/Multiple]: d
Specify first chamfer distance <1> : 10
Specify second chamfer distance
<10> :right-click
Select first line or [Undo/Polyline/Distance/Angle/ Trim/Method/Multiple]:pick the first line for the chamfer
Select second line or shift-select to apply corner:pick
Command:

Fig. 5.43 Select Chamfer from the Home/Modify panel

The result is shown in Fig. 5.44. The other two rectangles are chamfered in a similar manner except that the No trim prompt is brought into operation with the bottom left-hand example.

Fig. 5.44 Examples - Chamfer

REVISION NOTES

1. The Modify tools are among the most frequently used tools in AutoCAD 2010.
2. The abbreviations for the Modify tools are:

$$
\begin{aligned}
& \text { Copy - cp or co } \\
& \text { Mirror - mi } \\
& \text { Offset - o } \\
& \text { Array - ar } \\
& \text { Move - m } \\
& \text { Rotate - ro } \\
& \text { Scale - sc } \\
& \text { Stretch - s } \\
& \text { Trim - tr } \\
& \text { Extend - ex } \\
& \text { Break - br } \\
& \text { Join - j } \\
& \text { Chamfer - cha }
\end{aligned}
$$

Fillet - f
3. There are two other tools in the Modify toolbar or in the 2D Draw control panel - Erase some examples were given in Chapter 2 and Explode - further details of this tools will be given in Chapter 9

A note - selection windows and crossing windows

In the Options dialog settings can be made in the Selection sub-dialog for Visual Effects. A click on the Visual Effects Settings... button brings up another dialog. If the Area Selection Effect settings are set on a normal window from top left to bottom right, the window will colour in a chosen colour (default blue). A crossing window, bottom left to top right, will be coloured red (default colour). Note also that highlighting - selection Preview Effect - allows objects to highlight if this feature is on. These settings are shown in Fig. 5.45.

Fig. 5.45 Visual Setting Effects Settings sub-dialog of the Options dialog
4. When using Mirror, if text is part of the area to be mirrored, the set variable Mirrtext will require setting - to either 1 or 0 .
5. With Offset the Through prompt can be answered by clicking two points in the drawing area the distance of the desired offset distance.
6. Polar Arrays can be arrays around any angle set in the Angle of array field of the Array dialog.
7. When using Scale, it is advisable to practise the Reference prompt.
8. The Trim tool in either its Trim or its No trim modes is among the most useful tools in AutoCAD 2010.
9. When using Stretch, circles are unaffected by the stretching.
10. There are some other tools in the Home/Modify panel not described in this book. The reader is invited to experiment with these other tools. They are:
Bring to Front, Send to Back, Bring above Objects, Send under Objects Set by Layer, Change Space, Lengthen, Edit Spline, Edit Hatch, Reverse.

Exercises

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-1-85617-868-6

1. Construct the drawing in Fig. 5.46. All parts are plines of width $=0.7$ with corners filleted R10. The long strips have been constructed using Circle, Polyline, Trim and Polyline Edit. Construct one strip and then copy it using Copy.

Fig. 5.46 Exercise 1
2. Construct the drawing Fig. 5.47. All parts of the drawing are plines of width $=0.7$. The setting in the Array dialog is to be $\mathbf{1 8 0}$ in the Angle of array field.

Fig. 5.47 Exercise 2
3. Using the tools Polyline, Circle, Trim, Polyline Edit, Mirror and Fillet construct the drawing in Fig. 5.48.

Fig. 5.48 Exercise 3
4. Construct the circles and lines in Fig. 5.49. Using Offset and the Ttr prompt of the Circle tool followed by Trim, construct one of the outlines arrayed within the outer circle. Then, with Polyline Edit change the lines and arcs into a pline of width $=0.3$. Finally array the outline twelve times around the centre of the circles (Fig. 5.50).

Fig. 5.49 Exercise 4 - circles and lines on which the exercise is based

Fig. 5.50 Exercise 4
5. Construct the arrow in Fig. 5.51. Array the arrow around the centre of its circle 8 times to produce the right-hand drawing of Fig. 551.

Fig. 5.51 Exercise 5
6. Construct the left-hand drawing of Fig. 5.52. Then with Move, move the central outline to the top left-hand corner of the outer outline. Then with Copy make copies to the other corners.

Fig. 5.52 Exercise 6
7. Construct the drawing Fig. 5.53 and make two copies using Copy. With Rotate rotate each of the copies to the angles as shown.

Fig. 5.53 Exercise 7
8. Construct the dimensioned drawing of Fig. 5.54. With Copy, copy the drawing. Then with Scale, scale the drawing to scale of $\mathbf{0 . 5}$, followed by using Rotate to rotate the drawing through an angle of as shown. Finally scale the original drawing to a scale of 2:1.

Fig. 5.54 Exercise 8
9. Construct the left-hand drawing of Fig. 5.55. Include the dimensions in your drawing. Then, using the Stretch tool, stretch the drawing, including its dimensions to the sizes as shown in the right-hand. The dimensions are said to be associative.

Fig. 5.55 Exercise 9
10. Construct the drawing Fig. 5.56. All parts of the drawing are plines of width $=0.7$. The setting in the Array dialog is to be $\mathbf{1 8 0}$ in the Angle of array field.

Fig. 5.56 Exercise 10

Chapter 6

Dimensions and Text

AIMS OF THIS CHAPTER

The aims of this chapter are:

1. To describe a variety of methods of dimensioning drawings.
2. To describe methods of adding text to drawings.

Introduction

The dimension style (My_style) has already been set in the acadiso.dwt template, which means that dimensions can be added to drawings using this dimension style.

The Dimension tools

There are several ways in which the dimension tools can be called.

1. From the Annotate/Dimensions panel (Fig. 6.1).

Fig. 6.1 Dimension tools in the Annotate/Dimension panel
2. From the Dimension toolbar (Fig. 6.2).

Fig. 6.2 The Dimension toolbar
3. Click Dimension in the menu bar. Dimension tools can be selected from the drop-down menu which appears.
4. By entering an abbreviation for a dimension tool at the command line.

Any one of these methods can be used when dimensioning a drawing, but some operators may well decide to use a combination of the four methods.

Adding dimensions using the tools

First example - Linear Dimension (Fig. 6.4)

1. Construct a rectangle 180×110 using the Polyline tool.
2. Make the Dimensions layer current (Home/Layers panel).
3. Click the Linear tool icon in the Annotate/Dimension panel (Fig. 6.3) or on Linear in the Dimension toolbar. The command line shows:

Fig. 6.3 The Linear tool icon in the Annotate/Dimension panel

Command: _dimlinear
Specify first extension line origin or <select
object>:pick
Specify second extension line origin:pick
Non-associative dimension created.
Specify dimension line location or [Mtext/Text/
Angle/Horizontal/Vertical/Rotated]:pick
Dimension text $=180$
Command:
Fig. 6.4 shows the 180 dimension. Follow exactly the same procedure for the 110 dimension.

Fig. 6.4 First example - Linear dimension

Notes

1. If necessary use Osnaps to locate the extension line locations.
2. The prompt
```
Specify first extension line origin or [select
    object]:
```

also allows the line being dimensioned to be picked.
3. The drop-down menu from the Line tool icon contains the following tool icons - Angular, Linear, Aligned, Arc Length, Radius, Diameter, Jog Line and Ordinate. Please refer to Fig. 6.3 when working through the examples below. Note when a tool is chosen from this menu, the icon in the panel changes to the selected tool icon.

Second example - Aligned Dimension (Fig. 6.5)

1. Construct the outline Fig. 6.5 using the Line tool.

Fig. 6.5 Second example - Aligned dimension
2. Make the Dimensions layer current (Home/Layers panel).
3. Left-click the Aligned tool icon (see Fig. 6.3) and dimension the outline. The prompts and replies are similar to the first example.

Third example - Radius Dimension (Fig. 6.6)

1. Construct the outline Fig. 6.8 using the Line and Fillet tools.
2. Make the Dimensions layer current (Home/Layers panel).
3. Left-click the Radius tool icon (see Fig. 6.3). The command line shows:

Command:_dimradius

```
Select arc or circle:pick one of the arcs
Dimension text = 30
Specify dimension line location or [Mtext/Text/
    Angle]:pick
Command:
```


Fig. 6.6 Third example - Radius dimension
4. Continue dimensioning the outline as shown in Fig. 6.6.

Notes

1. At the prompt:

Mtext/Text/Angle]:
If a \mathbf{t} (Text) is entered, another number can be entered, but remember if the dimension is a radius the letter \mathbf{R} must be entered as a prefix to the new number.
2. If the response is a (Angle), and an angle number is entered the text for the dimension will appear at an angle. Fig. 6.7 shows a radius dimension entered as an angle of 45°.
3. If the response is \mathbf{m} (Mtext) the Text Formatting dialog appears together with a box in which new text can be entered. See page 143
4. Dimensions added to a drawing using other tools from the Dimensions control panel or from the Dimension toolbar should be practised.

Adding dimensions from the command line

From Figs. 6.1 and 6.2 it will be seen that there are some dimension tools which have not been described in examples. Some operators may prefer entering dimensions from the command line. This involves abbreviations for the required dimension such as:

For Linear Dimension - hor (horizontal) or ve (vertical); For Aligned Dimension - al;

For Radius Dimension - ra;
 For Diameter Dimension - d;
 For Angular Dimension - an;
 For Dimension Text Edit - te;
 For Quick Leader - 1 .

And to exit from the dimension commands - \mathbf{e} (Exit).

First example - hor and ve (horizontal and vertical) - Fig. 6.8

1. Construct the outline Fig. 6.7 using the Line tool. Its dimensions are shown in Fig. 6.8.

Fig. 6.7 First example - outline to dimension
2. Make the Dimensions layer current (Home/Layers panel).
3. At the command line enter dim. The command line will show:

Command:enter dim right-click
Dim:enter hor (horizontal) right-click Specify first extension line origin or <select object>:pick
Specify second extension line origin:pick Non-associative dimension created.
Specify dimension line location or [Mtext/Text/ Angle]:pick
Enter dimension text <50>:right-click
Dim:right-click
HORIZONTAL
Specify first extension line origin or <select object>:pick
Specify second extension line origin:pick Non-associative dimension created.
Specify dimension line location or [Mtext/Text/ Angle/Horizontal/Vertical/Rotated]:pick
Enter dimension text <140>:right-click
Dim:right-click
And the 50 and 140 horizontal dimensions are added to the outline.
4. Continue to add the right-hand 50 dimension. Then when the command line shows:
Dim:enter ve (vertical)right-click
Specify first extension line origin or <select object>:pick
Specify second extension line origin:pick
Specify dimension line location or [Mtext/Text/
Angle/Horizontal/Vertical/Rotated]:pick
Dimension text <20>:right-click
Dim:right-click
VERTICAL
Specify first extension line origin or <select object>:pick
Specify second extension line origin:pick
Specify dimension line location or [Mtext/Text/
Angle/Horizontal/Vertical/Rotated]:pick
Dimension text <100>:right-click
Dim: enter e (Exit)right-click
Command:
The result is shown in Fig. 6.8.

Fig. 6.8 First example - horizontal and vertical dimensions

Second example - an (Angular) - Fig. 6.10

1. Construct the outline Fig. $6.9-$ a pline of width $=1$.
2. Make the Dimensions layer current (Home/Layers panel).
3. At the command line:
```
Command:enter dim right-click
Dim:enter an right-click
Select arc, circle, line or <specify vertex>:
    pick
Select second line:pick
```


Fig. 6.9 Second example - outline for dimensions

Specify dimension arc line location or
[Mtext/Text/Angle/Quadrant]:pick
Enter dimension <90>:right-click
Enter text location (or press ENTER):pick Dim:

And so on to add the other angular dimensions.
The result is given in Fig. 6.10.

Fig. 6.10 Second example - an (Angular) dimension

Third example - I (Leader) - (Fig. 6.12)

1. Construct Fig. 6.11.
2. Make the Dimensions layer current (Home/Layers panel).
3. At the command line:

Command:enter dim right-click
Dim:enter l (Leader) right-click

Fig. 6.11 Third example - outline for dimensioning
Leader start:enter nea (osnap nearest) right-click to pick one of the chamfer lines
To point:pick
To point:pick
To point:right-click
Dimension text <0>:enter CHA 10×10 right-click Dim:right-click
Continue to add the other leader dimensions - Fig. 6.12.

Fig. 6.12 Third example - I (Leader) dimensions
Fourth example - te (Dimension Text Edit) - (Fig. 6.14)

1. Construct Fig. 6.13.

Fig. 6.13 Fourth example - dimensioned drawing
2. Make the Dimensions layer current (Home/Layers panel).
3. At the command line:

Command:enter dim right-click
Dim:enter te (tedit) right-click
Select dimension:pick the dimension to be changed Specify new location for text or [Left/Right/ Center/Home/Angle]: either pick or enter a prompt capital letter
Dim:
The results as given in Fig. 6.14 show dimensions which have been moved. The $\mathbf{2 1 0}$ dimension changed to the left-hand end of the dimension line, the 130 dimension changed to the left-hand end of the dimension line and the 30 dimension position changed.

Fig. 6.14 Fourth example - dimensions amended with te (Dimension Text Edit)

The Arc Length tool (Fig. 6.15)

1. Construct two arcs of different sizes as in Fig. 6.15.

Fig. 6.15 Examples - Arc Length tool
2. Make the Dimensions layer current (Home/Layers panel).
3. Call the Arc Length tool from the Annotate/Dimensions panel (see Fig. 6.3), or click on Arc Length in the Dimension toolbar, or enter dimare at the command line. The command line shows:

Command: _dimarc
Select arc or polyline arc segment:pick an arc
Specify arc length dimension location, or [Mtext/ Text/Angle/Partial/Leader]:pick a suitable position
Dimension text $=147$
Command:
Examples on two arcs are shown in Fig. 6.15.

The Jogged tool (Fig. 6.16)

1. Draw a circle and an arc as indicated in Fig. 6.16.

Fig. 6.16 Examples - the Jogged tool
2. Make the Dimensions layer current (Home/Layers panel).
3. Call the Jogged tool, either with a left-click on its tool icon in the Annotation/Dimension panel (see Fig. 6.3), or with a click on Jogged in the Dimension toolbar, or by entering jog at the command line. The command line shows:

```
Command: _dimjogged
Select arc or circle:pick the circle or the arc
Specify center location override:pick
Dimension text = 60
Specify dimension line location or [Mtext/Text/
    Angle]:pick
```

Specify jog location:pick
Command:
The results of placing a jogged dimension on a circle and an arc are shown in Fig. 6.16.

Dimension tolerances

Before simple tolerances can be included with dimensions, new settings will need to be made in the Dimension Style Manager dialog as follows:

1. Open the dialog. The quickest way of doing this is to enter \mathbf{d} at the command line followed by a right-click. This opens up the dialog.
2. Click the Modify... button of the dialog, followed by a left-click on the Primary Units tab and in the resulting sub-dialog make settings as shown in Fig. 6.17. Note the changes in the preview box of the dialog.

Fig. 6.17 The Tolerances sub-dialog of the Modify Dimension Style dialog

Example - tolerances (Fig. 6.19)

1. Construct the outline Fig. 6.18.

Fig. 6.18 First example - simple tolerances - outline
2. Make the Dimensions layer current (Home/Layers panel).
3. Dimension the drawing using either tools from the Dimension toolbar or by entering abbreviations at the command line. Because tolerances have been set in the Dimension Style Manager dialog (Fig. 6.17), the toleranced dimensions will automatically be added to the drawing (Fig. 6.19).

The dimensions in this drawing show tolerances
Fig. 6.19 Example - tolerances

Text

There are two main methods of adding text to drawings - Multiline Text and Single Line Text.

Example - Single Line Text (Fig. 6.23)

1. Open the drawing from the example on tolerances - Fig. 6.19.
2. Make the Text layer current (Home/Layers panel).
3. At the command line enter $\mathbf{d t}$ (for Single Line Text) followed by a right-click:
Command:enter dt right-click

TEXT
Current text style "ARIAL" Text height: 8
Annotative No:
Specify start point of text or
[Justify/style]:pick
Specify rotation angle of text <0>:right-click
Enter text:enter The dimensions in this drawing show tolerances press the Return key twice Command:

The result is given in Fig. 6.20.

Notes

1. When using Dynamic Text the Return key of the keyboard is pressed when the text has been entered. A right-click does not work.
2. At the prompt:
```
Specify start point of text or [Justify/
    Style]:enter s (Style)right-click
Enter style name or [?] <ARIAL>:enter ?
    right-click
Enter text style(s) to list <*>:right-click
```

And an AutoCAD Text Window (Fig. 6.20) appears listing all the styles which have been selected in the Text Style dialog.

```
A AutoCAD Text Window - Drawing2.dwg
                                    [0]|
Edit
Enter style name or [?] <Arial>:
Current text style: "Arial" Text height: 6 Annotative: No
Specify start point of text or [Justify/Style]: s
Enter style name or [?] <arial>: ?
Enter text style(s) to list <*>:
Text styles:
Style name: "Arial" Font typeface: Arial
    Height: 6 Width factor: 1 Obliquing angle: 0
    Generation: Normal
Style name: "Standard" Font typeface: Arial
    Height: 8 Width factor: 1 Obliquing angle: 0
    Generation: Normal
Current text style: "drial"
Current text style: "Arial" Text height: 6 Annotative: No
Specify start point of text or [Justify/Style]:

Fig. 6.20 The AutoCAD Text Window
3. In order to select the required text style its name must be entered at the prompt:
```

Enter style name or [?]
<ARIAL>:enter Romand right-click

```

And the text entered will be in the Romand style of height 9 . But only if that style was previously selected in the Text Style dialog.
4. Fig. 6.21 shows some text styles from the AutoCAD Text Window.

\section*{This is the TIMES text This is ROMANC text This is ROMAND text This is STANDARD text This is ITALIC text This is ARIAL text}

Fig. 6.21 Some text styles
5. There are two types of text fonts available in AutoCAD 2010 - the AutoCAD SHX fonts and the Windows True Type fonts. The ITALIC, ROMAND, ROMANS and STANDARD styles shown in Fig. 6.21 are AutoCAD text fonts. The TIMES and ARIAL styles are Windows True Type styles. Most of the True Type fonts can be entered in Bold, Bold Italic, Italic or Regular styles, but these variations are not possible with the AutoCAD fonts.
6. In the Font name pop-up list of the Text Style dialog, it can be seen that a large number of text styles are available to the AutoCAD 2010 operator. It is advisable to practise using a variety of these fonts to familiarise oneself with the text opportunities available with AutoCAD 2010.

\section*{Example - Multiline Text (Fig. 6.23)}
1. Make the Text layer current (Home/Layers panel).
2. Either left-click on the Multiline Text tool icon in the Home/ Annotation panel (Fig. 6.22), or click on Multiline Text... in the Draw toolbar, or enter \(\mathbf{t}\) at the command line:

Annotate


Fig. 6.22 Selecting Multiline Text... from the Home/Annotation panel
```

Current text style: "Arial" Text height: 6
Annotative No
Specify first corner:pick
Specify opposite corner or [Height/Justify/Line
spacing/Rotation/Style/Width/Columns]:pick

```

As soon as the opposite corner is picked, the Text Formatting box appears (Fig. 6.23). Text can now be entered as required within the box as indicated in this illustration.


Fig. 6.23 Example - Multiline Text entered in the text box

When all the required text has been entered left-click and the text box disappears leaving the text on screen.

\section*{Symbols used in text}

When text has to be added by entering letters and figures as part of a dimension, the following symbols must be used:

To obtain Ø75 enter \% \%c75;
To obtain \(\mathbf{5 5 \%}\) enter \(\mathbf{5 5 \%} \% \%\);
To obtain \(\mathbf{\pm 0 . 0 5}\) enter \(\% \mathbf{\%} \mathbf{p 0 . 0 5}\);
To obtain \(\mathbf{9 0}{ }^{\circ}\) enter \(\mathbf{9 0 \% \% \% d}\).

\section*{Checking spelling}

\section*{Note}

When a misspelt word or a word not in the AutoCAD spelling dictionary is entered in the Multiline Text box, red dots appear under the word, allowing immediate correction.

There are two methods for the checking of spelling in AutoCAD 2010.

\section*{First example - spell checking - ddedit (Fig. 6.24)}
1. Enter some badly spelt text as indicated in Fig. 6.24.

\section*{Thiss shows somme baddly spelt text \\ 1. The mis-spelt text}

\section*{Thiss shows somme baddly spelt text}

\section*{2. Text is selected}

\section*{This shows some badly spelt text}
3. The text after correction

Fig. 6.24 First example - spell checking - ddedit
2. Enter ddedit at the command line.
3. Left-click on the text. The text is highlighted. Edit the text as if working in a word-processing application and when satisfied left-click followed by a right-click.

\section*{Second example - the Spelling tool (Fig. 6.24)}
1. Enter some badly spelt text as indicated in Fig. 6.24.
2. Either click the Spell Check... icon in the Annotate/Text panel (Fig. 6.25) or enter spell or \(\mathbf{s p}\) at the command line.
3. The Check Spelling dialog appears (Fig. 6.26). In the Where to look field select Entire drawing from the field's pop-up list. The first badly spelt word is highlighted with words to replace them listed in the Suggestions field. Select the appropriate correct spelling as


Fig. 6.25 The Spell Check... icon in the Annotate/Text panel


Fig. 6.26 Second example - the Check Spelling dialog
Fig. 6.27 The AutoCAD Message
window showing that spelling check is complete
shown. Continue until all text is checked. When completely checked an AutoCAD Message appears (Fig. 6.27). If satisfied click its OK button.

\section*{REVISION NOTES}
1. In the Line and Arrows sub-dialog of the Dimension Style Manager dialog Lineweights were set to 0.3. If these lineweights are to show in the drawing area of AutoCAD 2010, the Show/Hide Lineweight button in the status bar must be set ON.
2. Dimensions can be added to drawings using the tools from the Annotate/Dimensions panel, from the Dimension toolbar, or by entering dim, followed by abbreviations for the tools at the command line.
3. It is usually advisable to use Osnaps when locating points on a drawing for dimensioning.
4. The Style and Angle of the text associated with dimensions can be changed during the dimensioning process.
5. When wishing to add tolerances to dimensions it will probably be necessary to make new settings in the Dimension Style Manager dialog.
6. There are two methods for adding text to a drawing - Single Line Text and Multiline Text.
7. When adding Single Line Text to a drawing, the Return key must be used and not the right-hand mouse button.
8. Text styles can be changed during the process of adding text to drawings.
9. AutoCAD 2010 uses two types of text style - AutoCAD SHX fonts and Windows True Type fonts.
10. Most True Type fonts can be in bold, bold italic, italic or regular format. AutoCAD fonts can only be added in the single format.
11. To obtain the symbols \(\emptyset ; \pm ;{ }^{\circ} ; \%\) use \(\% \% \mathrm{c} ; \% \% \mathrm{p} ; \% \% \mathrm{~d} ; \% \% \%\) before the figures of the dimension.
12. Text spelling can be checked by selecting Text/Edit... from the Modify drop-down menu, by selecting Spell Check... from the Text control panel, or by entering spell or sp at the command line.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-1-85617-868-6
1. Open any of the drawings previously saved from working through examples or as answers to exercises and add appropriate dimensions.
2. Construct the drawing Fig. 6.28 but in place of the given dimensions add dimensions showing tolerances of 0.25 above and below.


Fig. 6.28 Exercise 2
3. Construct and dimension the drawing

Fig. 6.29.


Fig. 6.29 Exercise 3
4. Construct two polygons as in Fig. 6.30 and add all diagonals. Set osnaps endpoint and intersection and using the lines as in Fig. 6.30 construct the stars as shown using a polyline of width \(=3\). Next erase all unwanted lines. Dimension the angles labelled \(\mathbf{A}, \mathbf{B}, \mathbf{C}\) and \(\mathbf{D}\).


Fig. 6.30 Exercise 4
5. Using the text style Arial of height 20 and enclosing the wording within a pline rectangle of Width \(=5\) and Fillet \(=10\), construct Fig. 6.31.

AutoCAD 2010

Fig. 6.31 Exercise 5

\title{
Chapter 7 Orthographic and Isometric
}

\section*{AIM OF THIS CHAPTER}

To introduce methods of constructing views in orthographic projection and the construction of isometric drawings.

\section*{Orthographic projection}


Orthographic projection involves viewing an article being described in a technical drawing from different directions - from the front, from a side, from above, from below or from any other viewing position. Orthographic projection often involves:

The drawing of details which are hidden, using hidden detail lines. Sectional views in which the article being drawn is imagined as being cut through and the cut surface drawn.
Centre lines through arcs, circles, spheres and cylindrical shapes.

\section*{An example of an orthographic projection}

Taking the solid shown in Fig. 7.1, construct a three-view orthographic projection of the solid:
1. Draw what is seen when the solid is viewed from its left-hand side and regard this as the front of the solid. What is drawn will be a front view (Fig. 7.2).

Fig. 7.1 Example orthographic


Fig. 7.2 The front view of the solid
2. Draw what is seen when the solid is viewed from the left-hand end of the front view. This produces an end view. Fig. 7.3 shows the end view alongside the front view.
3. Draw what is seen when the solid is viewed from above the front view. This produces a plan. Fig. 7.4 shows the plan below the front view.
4. In the Home/Layers panel, in the Layer list click on Centre to make it the current layer (Fig. 7.5). All lines will now be drawn as centre lines.


Fig. 7.3 Front and end views of the solid


Fig. 7.4 Front and end views and plan of the solid
5. In the three-view drawing add centre lines.
6. Make the Hidden layer the current layer and add hidden detail lines.
7. Make the Text layer current and add border lines and a title block.
8. Make the Dimensions layer current and add all dimensions.

The completed drawing is shown in Fig. 7.6.


Fig. 7.5 Making the Centre layer current from the Home/Layers panel


Fig. 7.6 The completed working drawing of the solid

\section*{First angle and third angle}

There are two types of orthographic projection - first angle and third angle. Fig. 7.7 is a pictorial drawing of the solid used to demonstrate the two angles. Fig. 7.8 shows a three-view first angle projection and Fig. 7.9 the same views in third angle.


Fig. 7.7 The solid used to demonstrate first and third angles of projection


End view



Fig. 7.8 A first angle projection



Fig. 7.9 A third angle projection

In both angles the viewing is from the same directions. The difference is that the view as seen is placed on the viewing side of the front view in third angle and on the opposite side to the viewing in first angle.

In order to show internal shapes of a solid being drawn in orthographic projection the solid is imagined as being cut along a plane and the cut surface then drawn as seen. Common practice is to hatch the areas which then show in the cut surface. Note the section plane line, the section label and the hatching in the sectional view Fig. 7.10.


Fig. 7.10 A sectional view

\section*{Adding hatching}

To add the hatching as shown in Fig. 7.10:
1. Call the Hatch tool - either left-click on its tool icon in the Home/ Draw panel (Fig. 7.11), click the tool in the Draw toolbar, or enter \(\mathbf{h}\) at the command line. (Note - do not enter hatch as this gives a different result). The Hatch and Gradient dialog (Fig. 7.12) appears.


Fig. 7.11 The Hatch tool icon and tooltip from the Home/Draw panel


Fig. 7.12 The Hatch and Gradient dialog and the ANSI Hatch Pattern palette
2. Click in the Swatch field. The Hatch Pattern Palette appears. Leftclick the ANSI tab and from the resulting pattern icons double-click the ANSI31 icon. The palette disappears and the ANSI31 pattern appears in the Swatch field.
3. In the dialog left-click the Pick an internal point button (Fig. 7.13). The dialog disappears.


Fig. 7.13 The Pick an internal point button of the Boundary Hatch and Fill dialog
4. In the front view pick points as shown in the left-hand drawing of Fig. 7.14. The dialog reappears. Click the Preview button of the dialog and, in the sectional view which reappears, check whether the hatching is satisfactory. In this example it may well be that the Scale figure in the dialog needs to be entered as \(\mathbf{2}\) in place of the default \(\mathbf{1}\). Press the Esc key of the keyboard and the dialog returns. Change the figure and Preview again. If satisfied right-click.


Fig. 7.14 The result of hatching

Isometric drawing must not be confused with solid model drawing, examples of which are given in Chapters 12 to 19. Isometric drawing is a 2D method of describing objects in a pictorial form.

\section*{Setting the AutoCAD window for isometric drawing}

To set the AutoCAD 2010 window for the construction of isometric drawings:
1. At the command line:

Command:enter snap
Specify snap spacing or [On/Off/Aspect/Rotate/ Style/Type] <5>: s (Style)
Enter snap grid style [Standard/Isometric] <S>:
i (Isometric)
Specify vertical spacing <5>:right-click
Command:

And the grid dots in the window assume an isometric pattern as shown in Fig. 7.15. Note also the cursor hair lines which are at set in an Isometric Left angle.


Fig. 7.15 The AutoCAD grid points set for isometric drawing


Fig. 7.16 The three isoplanes


Fig. 7.17 The three isocircles
2. There are three isometric angles - Isoplane Top, Isoplane Left and Isoplane Right. These can be set either by pressing the \(\mathbf{F 5}\) function key or by pressing the \(\mathbf{C t r l}\) and \(\mathbf{E}\) keys. Repeated pressing of either of these "toggles" between the three settings. Fig. 7.16 is an isometric view showing the three isometric planes.

\section*{The Isometric circle}

Circles in an isometric drawing show as ellipses. To add an isometric circle to an isometric drawing, call the Ellipse tool. The command line shows:
Command: _ellipse
Specify axis endpoint of ellipse or [Arc/Center/ Isocircle]:enter i (Isocircle) right-click
Specify center of isocircle:pick or enter coordinates
Specify radius of isocircle or [Diameter]:enter a number
Command:
And the isocircle appears. Its isoplane position is determined by which of the isoplanes is in operation at the time the isocircle was formed. Fig 7.17 shows these three isoplanes containing isocircles.

\section*{Examples of isometric drawings}

\section*{First example - isometric drawing (Fig. 7.20)}
1. Working to the shapes and sizes given in the orthographic projection Fig. 7.18. Set Snap on (press the F9 function key) and Grid on (F7).
2. Set Snap to Isometric and set the isoplane to Isoplane Top using F5.
3. With Line, construct the outline of the top of the model (Fig. 7.19) working to the dimensions given in Fig. 7.18.



Fig. 7.18 First example - isometric drawing - the model


Items 3 and 4


Fig. 7.19 First example - isometric drawing - items \(3,4,5\) and 6


Fig. 7.20 First example - isometric drawing
4. Call Ellipse tool and set to isocircle and add the isocircle of radius 20 centred in its correct position in the outline of the top (Fig. 7.19).
5. Set the isoplane to Isoplane Right and with the Copy tool, copy the top with its ellipse vertically downwards three times as shown in Fig. 7.20.
6. Add lines as shown in Fig. 7.19.
7. Finally using Trim remove unwanted parts of lines and ellipses to produce Fig. 7.20.

\section*{Second example - isometric drawing (Fig. 7.22)}

Fig. 7.21 is an orthographic projection of the model of which the isometric drawing is to be constructed. Fig. 7.22 shows the stages in its construction. The numbers refer to the items in the list below.


Fig. 7.21 Second example - isometric drawing - orthographic projection of model


Fig. 7.22 Second example - isometric drawing - stages in the construction
1. In Isoplane Right construct two isocircles of radii 10 and 20.
2. Add lines as in drawing \(\mathbf{2}\) and trim unwanted parts of isocircle.
3. With Copy, copy three times as in drawing 3 .
4. With Trim, trim unwanted lines and parts of isocircle as in drawing 4.
5. In Isoplane Left add lines as in drawing 5.
6. In Isoplane Right add lines and isocircles as in drawing 6.
7. With Trim, trim unwanted lines and parts of isocircles to complete the isometric drawing - drawing 7.

\section*{REVISION NOTES}
1. There are, in the main, two types of orthographic projection - first angle and third angle.
2. The number of views included in an orthographic projection depends upon the complexity of the component being drawn - a good rule to follow is to attempt fully describing the object in as few views as possible.
3. Sectional views allow parts of an object which are normally hidden from view to be more fully described in a projection.
4. When a layer is turned OFF, all constructions on that layer disappear from the screen.
5. If a layer is locked, objects can be added to the layer but no further additions or modifications can be added to the layer. If an attempt is made to modify an object on a locked layer, a small lock icon appears near the object and the command line shows:
```

Command: erase

```
Select objects:pick 1 found
1 was on a locked layer
and the object will not be modified.
6. Frozen layers cannot be selected, but note that layer 0 cannot be frozen.
7. Isometric drawing is a 2 D pictorial method of producing illustrations showing objects. It is not a 3D method of showing a pictorial view.
8. When drawing ellipses in an isometric drawing the Isocircle prompt of the Ellipse tool command line sequence must be used.
9. When constructing an isometric drawing Snap must be set to Isometric mode before construction can commence.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/ 978-1-85617-868-6

Fig. 7.23 is an isometric drawing of a slider fitment on which the three exercises \(\mathbf{1 , 2}\) and \(\mathbf{3}\) are based.


Fig. 7.23 Exercises 1, 2 and 3 - an isometric drawing of the three parts of the slider on which these exercises are based
1. Fig. 7.24 is a first angle orthographic projection of part of the fitment shown in the isometric drawing Fig. 7.23. Construct a threeview third angle orthographic projection of the part.


Fig. 7.24 Exercise 1
2. Fig. 7.25 is a first angle orthographic projection of the other part of the fitment. Construct a three-view third angle orthographic projection of the part.
3. Construct an isometric drawing of the part shown in Fig. 7.25.


Fig. 7.25 Exercises 2 and 3
4. Construct a three-view orthographic projection in an angle of your own choice of the tool holder assembled as shown in the isometric drawing Fig. 7.26. Details are given in Fig. 727.


Fig. 7.26 Exercises 4 and 5 - orthographic projections of the three parts of the tool holder


Fig. 7.27 Exercises 4 and 5 - orthographic drawing of the tool holder on which the two exercises are based
5. Construct an isometric drawing of the body of the tool holder shown in Figures 7.26 and 7.27.
6. Construct the orthographic projection given in Fig. 7.29.
7. Construct an isometric drawing of the angle plate shown in Figures 7.28 and 7.29.


Fig. 7.28 An isometric drawing of the angle plate on which exercises 6 and 7 are based


Fig. 7.29 Exercises 6 and 7 - an orthographic projection of the angle plate
8. Construct a third angle projection of the component shown in the isometric drawing Fig. 7.30 and the three-view first angle projection Fig. 7.31.


Fig. 7.30 Exercises 8 and 9 - an isometric drawing of the component for the two exercises
9. Construct the isometric drawing shown in Fig. 7.30 working to the dimensions given in Fig. 7.31.


Fig. 7.31 Exercises 8 and 9

\section*{Chapter 8 \\ Hatching}

\section*{AIM OF THIS CHAPTER}

To give further examples of the use of hatching in its various forms.

In Chapter 7 an example of the hatching of a sectional view in an orthographic projection was given. Further examples of the use of hatching will be described in this chapter.

There are a large number of hatch patterns available when hatching drawings in AutoCAD 2010. Some examples from the Other Predefined set of hatch patterns (Fig. 8.2) in the Hatch Pattern Palette sub-dialog are shown in Fig. 8.1.


Fig. 8.1 Some hatch patterns from Predefined hatch patterns

Other hatch patterns can be selected form the ISO or ANSI hatch pattern palettes, or the operator can design his/her own hatch patterns and save them to the Custom hatch palette.

\section*{First Example - hatching a sectional view (Fig. 8.3)}

Figure. 8.3 shows a two-view orthographic projection which includes a sectional end view. Note the following in the drawing:
1. The section plane line, consisting of a centre line with its ends marked \(\mathbf{A}\) and arrows showing the direction of viewing to obtain the sectional view.
2. The sectional view labelled with the letters of the section plane line.
3. The cut surfaces of the sectional view hatched with the ANSI31 hatch pattern, which is in general use for the hatching of engineering drawing sections.


Fig. 8.2 The Other Predefined Hatch Pattern Palette


Fig. 8.3 First example - Hatching


Fig. 8.4 Second example - hatching rules for sections

Figure 8.4 describes the stages in hatching a sectional end view of a lathe tool holder. Note the following in the section:
1. There are two angles of hatching to differentiate separate parts of the section.
2. The section follows the general rule that parts such as screws, bolts, nuts, rivets, other cylindrical objects, webs and ribs and other such features are shown as outside views within sections.

\section*{Third example - Associative hatching (Fig. 8.5)}

Figure 8.5 shows two end views of a house. After constructing the lefthand view, it was found that the upper window had been placed in the wrong position. Using the Move tool, the window was moved to a new position. The brick hatching automatically adjusted to the new position. Such associative hatching is only possible if check box is \(\mathbf{O N}-\) a tick in the check box in the Options area of the dialog (Fig. 8.6).

\section*{Fourth example - Colour Gradient hatching (Fig. 8.9)}

Figure 8.8 shows two examples of hatching from the Gradient sub-dialog of the Hatch and Gradient dialog.


Fig. 8.5 Third example - Associative hatching


Fig. 8.6 Associative hatching set ON in the Hatch and Gradient dialog
1. Construct two outlines each consisting of six rectangles (Fig. 8.9).
2. Click the Gradient icon in the Home/Draw panel (Fig. 8.7) or in the Draw toolbar. In the Hatch and Gradient dialog which appears


Fig. 8.7 The Gradient... tool icon from the Home/Draw panel
(Fig. 8.8) pick one of the gradient choices, followed with a click on the Pick an internal point button. Click one of the colour panels in the dialog and when then the dialog disappears, pick a single area of one of the rectangles in the left-hand drawings, followed by a click on the dialog's \(\mathbf{O K}\) button when the dialog reappears.
3. Repeat in each of the other rectangles of the left-hand drawing, changing the pattern in each of the rectangles.
4. Click the button (...) to the right of the Color field, select a new colour from the Select Color dialog which appears and repeat items \(\mathbf{3}\) and \(\mathbf{4}\) in six rectangles.

The result is shown in Fig. 8.9.


Fig. 8.8 The Hatch and Gradient dialog


Fig. 8.9 Fourth example - Gradient hatching

\section*{Note}

If the Two color radio button is set on (dot in circle) the colours involved in the gradient hatch can be changed by clicking the button marked with three full stops (...) on the right of the colour field. This brings a Select Color dialog on screen, which offers three choices of sub-dialogs from which to select colours.

\section*{Fifth example - advanced hatching (Fig. 8.12)}


Fig. 8.11 The Island display style selections in the expanded Hatch and Gradient dialog

If the arrow at the bottom right-hand corner of the Hatch and Gradient dialog is clicked (Fig. 8.10) the dialog expands to show the Island display style selections (Fig. 8.11).


Fig. 8.10 The More Options arrow of the Hatch and Gradient dialog
1. Construct a drawing which includes three outlines as shown in the lefthand drawing of Fig. 8.12 and copy it twice to produce three identical drawings.
2. Select the hatch patterns STARS at an angle of \(\mathbf{0}\) and scale \(\mathbf{1}\).
3. Click in the Normal radio button of the Island display style area.
4. Pick a point in the left-hand drawing. The drawing hatches as shown.
5. Repeat in the centre drawing with the radio button of the Outer style set on (dot in button).
6. Repeat in the right-hand drawing with Ignore set on.


Fig. 8.12 Fifth example - advanced hatching

\section*{Sixth example - text in hatching (Fig. 8.13)}
1. Construct a pline rectangle using the sizes given in Fig. 8.13.
2. In the Text Style Manager dialog, set the text font to Arial and its Height \(=25\).
3. Using the Dtext tool enter the text as shown central to the rectangle.
4. Hatch the area using the HONEY hatch pattern set to an angle of \(\mathbf{0}\) and scale of \(\mathbf{1}\).

The result is shown in Fig. 8.13.


Fig. 8.13 Sixth example - text in hatching

\section*{Note}

Text will be entered with a surrounding boundary area free from hatching providing the Normal radio button of the Island display style selection is on.

\section*{Seventh example - advanced hatching (Fig. 8.14)}
1. From the Home/Layers panel open the Layer list with a click on the arrow to the right of the Layer Control field (Fig. 8.14).


Fig. 8.14 Seventh example - the layers setup for the advanced hatch example
2. Note the extra added layer HATCH colour red (Fig. 8.14).
3. With the layer \(\mathbf{0}\) current construct the outline as given in Fig. 8.15.


Fig. 8.15 Seventh example - construction on layer 0
4. Make layer Text current and construct the lines as shown in Fig. 8.16.


Fig. 8.16 Seventh example - construction on layer Text
5. Make the layer HATCH current and add hatching to the areas shown in Fig. 8.17 using the hatch patterns ANGLE at scale \(\mathbf{2}\) for the roof and BRICK at a scale of \(\mathbf{0 . 7 5}\) for the wall.


Fig. 8.17 Seventh example - construction on layer HATCH
6. Finally turn the layer Text off. The result is given in Fig. 8.18.


Fig. 8.18 Seventh example - the finished drawing

\section*{REVISION NOTES}
1. A large variety of hatch patterns are available when working with AutoCAD 2010.
2. In sectional views in engineering drawings it is usual to show items such as bolts, screws, other cylindrical objects, webs and ribs as outside views.
3. When Associative hatching is set on, if an object is moved within a hatched area, the hatching accommodates to fit around the moved object.
4. Colour gradient hatching is available in AutoCAD 2010.
5. When hatching takes place around text, a space around the text will be free from hatching.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/ 978-1-85617-868-6
1. Figure 8.19 is a pictorial drawing of the component shown in the three-view orthographic projection Fig. 8 20. Construct the three views but with the front view as a sectional view based on the section plane A-A.


Fig. 8.19 Exercise 1 - a pictorial view


Fig. 8.20 Exercise 1
2. Construct the three-view orthographic projection Fig. 8.21 to the given dimensions with the front view as the sectional view A-A.


Fig. 8.21 Exercise 2
3. Construct the drawing Stage \(\mathbf{5}\) following the descriptions of stages given in Fig. 8.22.


Fig. 8.22 Exercise 3
4. Fig. 8.23 is a front view of a car with parts hatched. Construct a similar drawing of any make of car, using hatching to emphasise the shape.


Fig. 8.23 Exercise 4
5. Working to the notes given with the drawing Fig. 8.24, construct the end view of a house as shown. Use your own discretion about sizes for the parts of the drawing.


Fig. 8.24 Exercise 5
6. Working to dimensions of your own choice, construct the three-view projection of a twostorey house as shown in Fig. 8.25.


Fig. 8.25 Exercise 6
7. Construct Fig. 8.26 as follows:


Fig. 8.26 Exercise 7
(a) On layer Text, construct a circle of radius 90.
(b) Make layer \(\mathbf{0}\) current.
(c) Construct the small drawing to the details as shown and save as a block with a block name shape (see Chapter 9).
(d) Call the Divide tool by entering div at the command line:

Command:enter div right-click
Select object to divide:pick the circle
Enter number of segments or [Block]:enter b right-click
Enter name of block to insert: enter shape right-click
Align block with object? [Yes/ No] \(<Y>\) :right-click
Enter the number of segments: enter 20 right-click
command:
(e) Turn the layer Text off.

\section*{Chapter 9}

\section*{Blocks and Inserts}

\section*{AIMS OF THIS CHAPTER}

The aims of this chapter are:
1. To describe the construction of blocks and wblocks (written blocks).
2. To introduce the insertion of blocks and wblocks into drawings.
3. To introduce uses of the DesignCenter palette.
4. To explain the use of the Explode and Purge tools.

\section*{Introduction}

Blocks are drawings which can be inserted into other drawings. Blocks are contained in the data of the drawing in which they have been constructed. Wblocks (written blocks) are saved as drawings in their own right, but can be inserted into other drawings if required.

\section*{Blocks}

\section*{First example - Blocks (Fig. 9.3)}
1. Construct the building symbols as shown in Fig. 9.1 to a scale of \(1: 50\).


Fig. 9.1 First example - Blocks - symbols to be saved as blocks
2. Left-click the Create tool icon in the Home/Block panel (Fig. 9.2). The Block Definition dialog (Fig. 9.3) appears. To make a block from the Compass symbol drawing:
(a) Enter compass in the Name field.
(b) Click the Select Objects button. The dialog disappears. Window the drawing of the compass. The dialog reappears. Note the icon of the compass at the top-centre of the dialog.
(c) Click the Pick Point button. The dialog disappears. Click a point on the compass drawing to determine its insertion point. The dialog reappears.


Fig. 9.2 Click Create tool icon in the Home/Block panel


Fig. 9.3 The Block Definition dialog with entries for the compass block
(d) If thought necessary enter a description in the Description field of the dialog.
(e) Click the OK button. The drawing is now saved as a block in the drawing.
3. Repeat items \(\mathbf{1}\) and \(\mathbf{2}\) to make blocks of all the other symbols in the drawing.
4. Open the Block Definition dialog again and click the arrow on the right of the Name field. Blocks saved in the drawing are listed (Fig. 9.4).

\section*{Inserting blocks into a drawing}

There are two methods by which symbols saved as blocks can be inserted into another drawing.


Fig. 9.4 The pop-up list in the Name field of the Block Definition dialog showing all blocks saved in the drawing

\section*{Example - first method of inserting blocks}

Ensure that all the symbols saved as blocks using the Create tool are saved in the data of the drawing in which the symbols were constructed, erase the drawings of the symbols and in their place construct the outline of the plan of a bungalow to a scale of 1:50 (Fig. 9.5). Then:


Fig. 9.5 First example - inserting blocks. Outline plan
1. Left-click the Insert tool icon in the Home/Block panel (Fig. 9.6) or the Insert Block tool in the Draw toolbar. The Insert dialog appears on screen (Fig. 9.7). From the Name pop-up list select the name of the block which is to be inserted, in this example the 2.5 window.


Fig. 9.6 The Insert tool icon in the Home/Block panel


Fig. 9.7 The Insert dialog with its Name pop-up list displaying the names of all blocks in the drawing
2. Click the dialog's OK button; the dialog disappears. The symbol drawing appears on screen with its insertion point at the intersection of the cursor hairs ready to be dragged into its position in the plan drawing.
3. Once all the block drawings are placed, their positions can be adjusted. Blocks are single objects and can thus be dragged into new positions as required under mouse control. Their angle of position can be amended at the command line, which shows:
```

Command:
INSERT
Specify insertion point or [Basepoint/Scale/X/
Y/Z/Rotate/PScale/PX/PY/PZ/PRotate]:enter r
(Rotate) right-click
Specify insertion angle:enter 180 right-click
Specify insertion point:pick
Command:

```

Selection from these prompts allows scaling, stretching along any axis, previewing etc. as the block is inserted.
4. Insert all necessary blocks and add other detail as required to the plan outline drawing. The result is given in Fig. 9.8.


Fig. 9.8 Example - first method of inserting blocks

\section*{Example - second method of inserting blocks}
1. Save the drawing which includes all the blocks to a suitable file name (e.g. building_symbols.dwg). Remember this drawing includes data of the blocks in its file.
2. Left-click Design Center in the View/Palettes panel (Fig. 9.9) or press the Ctrl + \(\mathbf{2}\) keys. The DesignCenter palette appears on screen (Fig. 9.10).


Fig. 9.9 Selecting Design Center from the View/Palettes panel


Fig. 9.10 The DesignCenter with the compass block dragged on screen
3. With the outline plan (Fig. 9.5) on screen the symbols can all be dragged into position from the DesignCenter.

\section*{Notes about DesignCenter palette}
1. As with other palettes, the DesignCenter palette can be re-sized by dragging the palette to a new size from its edges or corners.
2. Clicks on one of the three icons at the top-right corner of the palette (Fig. 9.11) have the following results:


Fig. 9.11 The icons at the top of the DesignCenter palette

Tree View Toggle - changes from showing two areas - a Folder List and icons of the blocks within a file and icons of the blocks within a file - to a single area showing the block icons (Fig. 9.12).

Preview - a click on the icon opens a small area at the base of the palette showing an enlarged view of the selected block icon.


Fig. 9.12 The results of a click on Tree View Toggle

Description - a click on the icon opens another small area with a description of the block.

A block is a single object no matter how many objects it was originally constructed from. This enables a block to be dragged about the drawing area as a single object.

\section*{The Explode tool}

A check box in the bottom left-hand corner of the Insert dialog is labelled

Explode set ON

Explode

\section*{Explode set OFF}

Fig. 9.13 The Explode check box in the Insert dialog

Explode. If a tick is in the check box, Explode will be set on and when a block is inserted it will be exploded into the objects from which it was constructed (Fig. 9.13).

Another way of exploding a block would be to use the Explode tool from the Home/Modify panel (Fig. 9.14). A click on the icon or entering ex at the command line brings prompts into the command line:

Command:_explode
Select objects:pick a block on screen 1 found.
Select objects:right-click
Command:

And the picked object is exploded into its original objects.


Fig. 9.14 The Explode tool icon in the Home/Modify panel

\section*{Purge}

The Purge dialog (Fig. 9.15) is called to screen by entering pu or purge at the command line.


Fig. 9.15 The Purge dialog

Purge can be used to remove data (if any is to be purged) from within a drawing, thus saving file space when a drawing is saved to disk.

To purge a drawing of unwanted data (if any), in the dialog click the Purge All button and a sub-dialog appears with three suggestions - purging of a named item, purging of all the items or skip purging a named item.

Taking the drawing Fig. 9.8 (page 182) as an example. If all the unnecessary data is purged from the drawing, the file will be reduced from 145 Kbytes to 67 Kbytes when the drawing is saved to disk.

\section*{Using the DesignCenter (Fig. 9.18)}
1. Construct the set of electric/electronic circuit symbols shown in Fig. 9.16 and make a series of blocks from each of the symbols.


Battery


INT


PNP


Bridge


Lamp


Capacito


Varcapac


Diode


LDR


PRswitch


Resistor


Varres


Switch


LSR


Varres2


Fuse


NPN


Signal

Fig. 9.16 Example using the DesignCenter - a set of electric/electronic symbols
2. Save the drawing to a file Fig16.dwg.
3. Open the acadiso.dwt template. Open the DesignCenter with a click on its icon in the View/Palettes panel.
4. From the Folder list select the file Fig16.dwg and click on Blocks under its file name. Then drag symbol icons from the DesignCenter into the drawing area as shown in Fig. 9.17. Ensure they are placed in appropriate positions in relation to each other to form a circuit. If necessary either Move and/or Rotate the symbols into correct positions.


Fig. 9.17 Example using the DesignCenter
5. Close the DesignCenter palette with a click on the \(\mathbf{x}\) in the top lefthand corner.
6. Complete the circuit drawing as shown in Fig. 9.18.


Fig. 9.18 Example using the DesignCenter - the completed circuit

\section*{Note}

Figure 9.18 does not represent an authentic electronics circuit.

Wblocks or written blocks are saved as drawing files in their own right and are not part of the drawing in which they have been saved.

\section*{Example - wblock (Fig. 9.19)}


Fig. 9.19 Example - Wblock
1. Construct a light-emitting diode (LED) symbol and enter \(\mathbf{w}\) at the command line. The Write Block dialog appears (Fig. 9.19).


Fig. 9.20 An example of a drawing dragged from the DesignCenter
2. Click the button marked with three full stops (...) to the right of the File name and path field and from the Browse for Drawing File dialog which comes to screen select an appropriate directory. The directory name appears in the File name and path field. Add LED.dwg at the end of the name.
3. Make sure the Insert units is set to Millimeters in its pop-up list.
4. Click the Select objects button, Window the symbol drawing and when the dialog reappears, click the Pick point button, followed by selecting the left-hand end of the symbol.
5. Finally click the OK button of the dialog and the symbol is saved in its selected directory as a drawing file LED.dwg in its own right.

\section*{Note on the DesignCenter}

Drawings can be inserted into the AutoCAD window from the
DesignCenter by dragging the icon representing the drawing into the window (Fig. 9.20).

When such a drawing is dragged into the AutoCAD window, the command line shows a sequence such as:
```

Command: _-INSERT Enter block name or [?]:
"C:\Acad2010\Chapter16\Inserts\Fig06.dwg"
Units: Millimetres Conversion: 1.0000
Specify insertion point or [Basepoint/Scale/X/Y/
Z/Rotate]:enter s right-click
Specify scale factor for XYZ axes
<1> :enter 4 right-click
Specify insertion point or
[Basepoint/Scale/X/Y/Z/Rotate] : pick
Specify rotation angle <0>:
Command:

```

\section*{REVISION NOTES}
1. Blocks become part of the drawing file in which they were constructed.
2. Wblocks become drawing files in their own right.
3. Drawings or parts of drawings can be inserted in other drawings with the Insert tool.
4. Inserted blocks or drawings are single objects unless either the Explode check box of the Insert dialog is checked or the block or drawing is exploded with the Explode tool.
5. Drawings can be inserted into the AutoCAD drawing area using the DesignCenter.
6. Blocks within drawings can be inserted into drawings from the DesignCenter.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/ 978-1-85617-868-6
1. Construct the building symbols Fig. 921 in a drawing saved as symbols.dwg. Then using the DesignCenter construct a building drawing of the first floor of the house you are living in making use of the symbols. Do not bother too much about dimensions because this exercise is designed to practise using the idea of making blocks and using the DesignCenter.


Fig. 9.21 Exercise 1
2. Construct drawings of the electric/electronics symbols in Fig. 9.17 (page 187) and save them as blocks in a drawing file electronics.dwg.
3. Construct the electronics circuit given in Fig. 9.22 from the file electronics.dwg using the DesignCenter.


Fig. 9.22 Exercise 3
4. Construct the electronics circuit given in Fig. 9.23 from the file electronics.dwg using the DesignCenter.


Fig. 9.23 Exercise 4

\section*{Chapter 10}

\section*{Other types of file format}

\section*{AIMS OF THIS CHAPTER}

The aims of this chapter are:
1. To introduce Object Linking and Embedding (OLE) and its uses.
2. To introduce the use of Encapsulated Postscript (EPS) files.
3. To introduce the use of Data Exchange Format (DXF) files.
4. To introduce raster files.
5. To introduce Xrefs.

\section*{Object linking and embedding}

\section*{First example - Copying and Pasting (Fig. 10.2)}
1. Open any drawing in the AutoCAD 2010 window (Fig. 10.1).


Fig. 10.1 A drawing in the AutoCAD 2009 window showing Copy Link selected from the Edit drop-down menu
2. Click Copy Link in the Edit drop-down menu, or enter copylink at the command line.
3. Open Microsoft Word and click on Paste in the Edit drop-down menu (Fig. 10.2). The drawing from the Clipboard appears in the Microsoft Word document (Fig. 10.2). Add text as required.

\section*{Note}

Similar results can be obtained using the Copy Clip and Copy with Base Point tools from the Edit drop-down menu.


Fig. 10.2 Example - Copying and Pasting

\section*{Second example - EPS file (Fig. 10.5)}
1. With the same drawing on screen click on Export... in the File dropdown menu (Fig. 10.3). The Export Data dialog appears (Fig. 10.3). Pick Encapsulated PS (*.eps) from the Files of type pop-up list then enter a suitable file name (e.g. building.eps) in the File name field and click the Save button.


Fig. 10.3 Selecting the Export tool icon from the File drop-down menu and the Export Data dialog
2. Open a desktop publishing application. That shown in Fig. 10.4 is PageMaker.


Fig. 10.4 An *.eps file placed in position in a PageMaker document
3. From the File drop-down menu of PageMaker click Place... A dialog appears listing files which can be placed in a PageMaker document. Among the files named will be building.eps. Double-click that file name and an icon appears, the placing of which determines the position of the *.eps file drawing in the PageMaker document (Fig. 10.4).
4. Add text as required.
5. Save the PageMaker document to a suitable file name.
6. Go back to the AutoCAD drawing and delete the title.
7. Make a new *.eps file with the same file name (building.eps).
8. Go back into PageMaker and click Links Manager... in the File drop-down menu. The Links Manager dialog appears (Fig. 10.5).


Fig. 10.5 The Links Manager dialog of PageMaker

Against the name of the building.eps file name is a dash and a note at the bottom of the dialog explaining that changes have taken place in the drawing from which the *.eps had been derived. Click the Update button and when the document reappears the drawing in PageMaker no longer includes the erased title.

\section*{Notes}
1. This is Object Linking and Embedding (OLE). Changes in the AutoCAD drawing saved as an *.eps file are linked to the drawing embedded in another application document, so changes made in the AutoCAD drawing are reflected in the PageMaker document.
2. There is actually no need to use the Links Manager because if the file from PageMaker is saved with the old *.eps file in place, when it is reopened the file will have changed to the redrawn AutoCAD drawing, without the erased title.

\section*{DXF (data exchange format) files}

The DXF format was originated by Autodesk (publishers of AutoCAD), but is now in general use in most CAD (computer-aided design) software. A drawing saved to a *.dxf format file can be opened in most other CAD software applications. This file format is of great value when drawings are being exchanged between operators using different CAD applications.

\section*{Example - DXF file (Fig. 10.7)}
1. Open a drawing in AutoCAD. This example is shown in Fig. 10.6.
2. Click on Save As... in the Menu Browser dialog and in the Save Drawing As dialog which appears click AutoCAD 2007 DXF [*.dxf] in the Files of type field pop-up list.
3. Enter a suitable file name. In this example this is Fig06.dxf. The extension .dxf is automatically included when the Save button of the dialog is clicked (Fig. 10.7).
4. The DXF file can now be opened in the majority of CAD applications and then saved to the drawing file format of the CAD in use.

\section*{Note}

To open a DXF file in AutoCAD 2010, select Open... from the Menu Browser dialog and in the Select File dialog select AutoCAD 2007 DXF [ \({ }^{*} . \mathbf{d x f}\) ] from the pop-up list from the Files of type field.


Fig. 10.6 Example - DXF file. Drawing to be saved as a *. dxf file


Fig. 10.7 The Save Drawing As dialog set to save drawings in DXF format

\section*{Raster images}

A variety of raster files can be placed into AutoCAD 2010 drawings from the Select Image File dialog brought to screen with a click on Raster Image Reference... from the Insert drop-down menu. In this example the selected raster file is a bitmap (extension *.bmp) of a rendered 3D model
drawing constructed to the views in an assembly drawing of a lathe tool post (see Chapter 15 about the rendering of 3D models).

\section*{Example - placing a raster file in a drawing (Fig. 10.11)}


Fig. 10.8 Selecting Raster Image Reference... from the Insert drop-down menu
1. Click Raster Image Reference... from the Insert drop-down menu (Fig. 10.8). The Select Reference File dialog appears (Fig. 10.9). Click the file name of the image to be inserted, in this example Fig05 (a bitmap *.bmp). A preview of the bitmap appears in the Preview area of the dialog.


Fig. 10.9 The Select Reference File dialog
2. Click the Open button of the dialog. The Attach Image dialog appears (Fig. 10.10) showing a preview of the bitmap image.


Fig. 10.10 The Attach Image dialog

\section*{3. Click the OK button, the command line shows:}

Command: _imageattach
Specify insertion point <0,0>:click at a point on screen
Base image size: Width: 1.000000, Height:
1.032895, Millimeters

Specify scale factor \(<1>: d r a g\) a corner of the image to obtain its required size
Command:
And the raster image appears at the picked point (Fig. 10.11).


Fig. 10.11 Example - placing a raster file in a drawing

\section*{Notes}

As will be seen from the Insert drop-down menu and the dialogs which can be opened from the menu, a variety of different types of images can be inserted into an AutoCAD drawing. Some examples are:

External References (Xrefs) - If a drawing is inserted into another drawing as an external reference, any changes made in the original Xref drawing are automatically reflected in the drawing into which the Xref has been inserted. See later in this chapter.

Field - A click on the name brings up the Field dialog. Practise inserting various categories of field names from the dialog.

Layout - A wizard appears allowing new layouts to be created and saved for new templates if required.

3D Studio - allows the insertion of images constructed in the Autodesk software 3D Studio from files with the format *.3ds.

\section*{External References (Xrefs)}

If a drawing is inserted into another drawing as an external reference, any changes made in the original Xref drawing subsequent to its being inserted are automatically reflected in the drawing into which the Xref has been inserted.

\section*{Example - External References (Fig. 10.19)}
1. Construct the three-view orthographic drawing Fig. 10.12. Dimensions for this drawing will be found in Fig. 15.52. Save the drawing to a suitable file name.



Fig. 10.13 The spindle drawing saved as
Fig13.dwg

Fig. 10.12 Example - External References - original drawing
2. As a separate drawing construct Fig. 10.13. Save it as a wblock with the name of Fig13.dwg and with a base insertion point at the crossing of its centre line with the left-hand end of its spindle.


Fig. 10.15 The
External References palette
3. Click External References in the View/Palettes panel (Fig. 10.14). The External References palette appears (Fig. 10.15).


Fig. 10.14 The External References tool in the View/Palettes panel
4. Click its Attach button and select Attach DWG... from the pop-up list which appears when a left-click is held on the button. Select the drawing of a spindle (Fig13.dwg) from the Select Reference file dialog which appears followed by a click on the dialog's Open button. This brings up the Attach External Reference dialog (Fig. 10.16) showing Fig13 in its Name field. Click the dialog's OK button.


Fig. 10.16 The Attach External Reference dialog

Fig. 10.17 The spindle in place in the original drawing
5. The spindle drawing appears on screen ready to be dragged into position. Place it in position as indicated in Fig. 10.17.


Fig. 10.18 The revised spindle.dwg drawing
6. Save the drawing with its xref to its original file name.
7. Open the drawing Fig15.dwg and make changes as shown in Fig. 10.18.
8. Now reopen the original drawing. The external reference within the drawing has changed in accordance with the alterations to the spindle drawing. Fig. 10.19 shows the changes in the front view of the original drawing.


Fig. 10.19 Example - Xrefs

\section*{Note}

In this example, to ensure accuracy of drawing the external reference will need to be exploded and parts of the spindle changed to hidden detail lines.

\section*{Dgnimport and dgnexport}

Drawings constructed in MicroStation V8 format (*.dgn) can be imported into AutoCAD 2010 format using the command dgnimport at the command line. AutoCAD drawings in AutoCAD 2004 format can be exported into MicroStation *.dgn format using the command dgnexport.

\section*{Example of importing a *.dgn drawing into AutoCAD}
1. Fig 10.20 is an example of an orthographic drawing constructed in MicroStation V8.
2. In AutoCAD 2010 at the command line enter dgnimport. The dialog Fig. 10.21 appears on screen from which the required drawing file name can be selected. When the Open button of the dialog is clicked a warning window appears informing the operator of steps to take in order to load the drawing. When completed the drawing loads (Fig. 10.22).

In a similar manner AutoCAD drawing files can be exported to
MicroStation using the command dgnexport entered at the command line.


Fig. 10.20 Example - a drawing in MicroStation V8


Fig. 10.21 The Import DGN File dialog

\section*{Multiple Document Environment (MDE)}
1. Open several drawings in AutoCAD; in this example four separate drawings have been opened.
2. In the View/Window panel, click Tile Horizontally (Fig. 10.23). The four drawings rearrange as shown in Fig. 10.24.
 panel


Fig. 10.24 Four drawings in the Multiple Document Environment

\section*{Note}

The names of the drawings appear in the Window drop-down menu, showing their directories, file names and file name extensions.

\section*{REVISION NOTES}
1. The Edit tools Copy Clip, Copy with Base Point and Copy Link enable objects from AutoCAD 2010 to be copied for Pasting onto other applications.
2. Objects can be copied from other applications to be pasted into the AutoCAD 2010 window.
3. Drawings saved in AutoCAD as DXF (*.dxf) files can be opened in other computer-aided design (CAD) applications.
4. Similarly drawings saved in other CAD applications as *.dxf files can be opened in AutoCAD 2010.
5. Raster files of the format types *.bmp, *.jpg, *pcx, *.tga, *.tif among other raster type file objects can be inserted into AutoCAD 2010 drawings.
6. Drawings saved to the Encapsulated Postscript (*.eps) file format can be inserted into documents of other applications.
7. Changes made in a drawing saved as an *.eps file will be reflected in the drawing inserted as an *.eps file in another application.
8. When a drawing is inserted into another drawing as an external reference changes made to the inserted drawing will be updated in the drawing into which it has been inserted.
9. A number of drawings can be opened in the AutoCAD 2010 window.
10. Drawings constructed in MicroStation V8 can be imported into AutoCAD 2010 using the command dgnimport.
11. Drawings constructed in AutoCAD 2010 can be saved as MicroStation *.dgn drawings to be opened in MicroStation V8.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/ 978-1-85617-868-6
1. Fig. 10.25 shows a pattern formed by inserting an external reference and then copying or arraying the external reference.


Fig. 10.25 Exercise 1 - original pattern
atched parts of the external reference drawing were then changed using a different hatch pattern. The result of the change is shown in Fig. 10.26.


Fig. 10.26 Exercise 1

Construct a similar xref drawing, insert as an xref, array or copy to form the pattern, then change the hatching, save the xref drawing and note the results.
2. Fig 10.27 is a rendering of a roller between two end holders. Fig. 10.28 gives details the end holders and the roller in orthographic projections.


Fig. 10.27 Exercise 2 - a rendering of the holders and roller


Fig. 10.28 Exercise 2 - details of the parts of the holders and roller

Construct a full size front view of the roller and save to a file named roller.dwg. Then as a separate drawing construct a front view of the two end holders in their correct positions to receive the roller and save to a file named assembly.dwg.

Insert the roller drawing into the assembly drawing as an xref.
Open the roller.dwg and change its outline as shown in Fig. 10.29. Save the drawing. Open assembly.dwg and note the change in the inserted xref.


Fig. 10.29 The amended xref drawing
3. Click Image... in the Reference panel and insert a JPEG image (*.jpg file) of a photograph into the AutoCAD 2010 window. An example is given in Fig. 10.30.


Fig. 10.30 Exercise 3 - an example
4. Using Copy from the Insert drop-down menu, copy a drawing from AutoCAD 2010 into a Microsoft Word document. An example is given in Fig. 10.31. Add some appropriate text.


Fig. 10.31 Exercise 4 - an example
5. The plan in Figures \(10.1,10.2\) and 10.3 is incorrect in that some details have been missed from the drawing. Can you identify the error?

\section*{Chapter 11}

\section*{Sheet sets}

\section*{AIMS OF THIS CHAPTER}

The aims of this chapter are:
1. To introduce sheet sets.
2. To describe the use of the Sheet Set Manager.
3. To give an example of a sheet set based on a design of a two-storey house.

When anything is to be manufactured or constructed, whether it be a building, an engineering design, an electronics device or any other form of manufactured artefact, a variety of documents, many in the form of technical drawings, will be needed to convey to those responsible for constructing the design all the information necessary to be able to proceed according to the wishes of the designer. Such sets of drawings may be passed between the people or companies responsible for the construction, enabling all those involved to make adjustments or suggest changes to the design. In some cases there may well be a considerable number of drawings required in such sets of drawings. In AutoCAD 2010 all the drawings from which a design is to be manufactured can be gathered together in a sheet set. This chapter shows how a much reduced sheet set of drawings for the construction of a house at 62 Pheasant Drive can be produced. Some other drawings, particularly detail drawings, would be required in this example, but to save page space the sheet set described here consists of only four drawings with a subset of another four drawings.

\section*{A sheet set for 62 Pheasant Drive}
1. Construct a template 62 Pheasant Drive.dwt based upon the acadiso. dwt template, but including a border and a title block. Save the template in a Layout1 format. An example of the title block from one of the drawings constructed in this template is shown in Fig. 11.1.


Fig. 11.1 The title block from drawing number 2 of the sheet set drawings
2. Construct each of the drawings which will form the sheet set in this drawing template. The whole set of drawings is shown in Fig. 11.2. Save the drawings in a directory - in this example this has been given the name 62 Pheasant Drive.
3. Click Sheet Set Manager in the View/Palettes panel (Fig. 11.3). The Sheet Set Manager palette appears (Fig. 11.4). Click New Sheet Set... in the pop-up menu at the top of the palettes. The first of a series of Create Sheet Set dialogs appears - the Create Sheet Set - Begin dialog (Fig. 11.5). Click the radio button next to Existing drawings, followed by a click on the Next button and the next dialog Sheet Set Details appears (Fig. 11.6).


Fig. 11.2 The eight drawings in the 62 Pheasant Drive sheet set


Fig. 11.3 Selecting Sheet Set Manager from the View/Palettes panel


Fig. 11.4 The Sheet Set Manager palette


Fig. 11.5 The first of the Create Sheet Set dialogs - Begin


Fig. 11.6 The Sheet Set Details dialog
4. Enter details in the dialog as shown in Fig. 11.6. Then click the Next button to bring the Choose Layouts dialog to screen (Fig. 11.7).
5. Click its Browse button and from the Browse for Folder list which comes to screen, pick the directory 62 Pheasant Drive. Click the OK button and the drawings held in the directory appear in the Choose Layouts dialog (Fig. 11.7). If satisfied the list is correct, click the Next button. A Confirm dialog appears (Fig. 11.8). If satisfied click the Finish button and the Sheet Set Manager palette appears showing the drawings which will be in the 62 Pheasant Drive sheet set (Fig. 11.9).


Fig. 11.7 The Choose Layouts dialog


Fig. 11.8 The Confirm dialog

\section*{Notes}
1. The eight drawings in the sheet set are shown in Fig. 11.9. If any of the drawings in the sheet set are subsequently amended or changed, when the drawing is opened again from the 62 Pheasant Drive Sheet Manager palette, the drawing will include any changes or amendments.


Fig. 11.9 The Sheet Manager palette for 62 Pheasant Drive
2. Drawings can only be placed into sheet sets if they have been saved in a Layout screen. Note that all the drawings shown in the \(\mathbf{6 2}\) Pheasant Drive Sheet Set Manager have Layout1 after the drawing names because each has been saved after being constructed in a Layout1 template.
3. Sheet sets in the form of DWF (Design Web Format) files can be sent via email to others who are using the drawings or placed on an intranet. The method of producing a DWF for the 62 Pheasant Drive Sheet Set follows.

\section*{62 Pheasant Drive DWF}
1. In the \(\mathbf{6 2}\) Pheasant Drive Sheet Set Manager click the Publish icon, followed by a click on Publish to DWF in the menu which appears (Fig. 11.10). The Specify DWF File dialog appears (Fig. 11.11). Enter 62 Pheasant Drive in the File name field followed by a click on the Select button. A warning window (Fig. 11.12) appears. Click its Close button. The Publish Job in Progress icon in the bottom right-hand corner of the AutoCAD 2010 window starts fluctuating in shape, showing that the DWF file is being processed (Fig. 11.12). When the icon becomes stationary right-click the icon and click View Plotted file in the right-click menu which appears (Fig. 11.13).


Fig. 11.10 The Publish icon in the Sheet Set Manager


Fig. 11.11 The Select DWF File dialog
\begin{tabular}{|c|c|}
\hline Plot-Processing Background Jot & 区 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Your printing or publishing job is processing in the background. \\

\end{tabular}} \\
\hline \(\square\) Do not stow metis message ogain & aques \\
\hline
\end{tabular}


Fig. 11.12 The Publish Job in Progress icon


Fig. 11.13 The right-click menu of the icon


Fig. 11.14 The Autodesk Design Review showing details of the 62 Pheasant Drive.dwf file
2. The Autodesk Design Review window appears showing the \(\mathbf{6 2}\) Pheasant Drive.dwf (Fig. 11.14). Click on the arrow Next Page (Page On) to see other drawings in the DWF file.
3. If required the Design Review file can be sent between people by email as an attachment, opened in a company's intranet or, indeed, included within an internet web page.

\section*{REVISION NOTES}
1. To start off a new sheet set, select the Sheet Set Manager icon in the Tools/Palettes panel.
2. Sheet sets can only contain drawings saved in Layout format.
3. Sheet sets can be published as Design Review Format (*.dwf) files which can be sent between offices by email, published on an intranet or published on a web page.
4. Sub-sets can be included in sheet sets.
5. Changes or amendments made to any drawings in a sheet set are reflected in the sheet set drawings when the sheet set is opened.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/ 978-1-85617-868-6
1. Fig. 11.15 is an exploded orthographic projection of the parts of a piston and its connecting rod. There are four parts in the assembly. Small drawings of the required sheet set are shown in Fig. 11.17. Construct
the drawing in Fig. 11.15 and also the four drawings of its parts. Save each of the drawings in a Layout1 format and construct the sheet set which contains the five drawings.


Fig. 11.15 Exercise 1 - exploded orthographic projection


Fig. 11.16 The DWF for exercise 1

Construct the DWF file of the sheet set (Fig. 11.16). Experiment sending it to a friend via email as an attachment to a document, asking him/her to return the whole email to you without changes. When the email is returned, open its DWF file and click each drawing icon in turn to check the contents of the drawings.
2. Construct a sheet set similar to that in the answer to Exercise 1 from the exploded orthographic drawing of a Machine adjusting spindle given in Fig. 11.18.


Fig. 11.17 Exercise 1 - the five drawings in the sheet set


Fig. 11.18 Exercise 2

3D Design

\section*{Chapter 12}

\section*{Introducing 3D modelling}

\section*{AIMS OF THIS CHAPTER}

The aims of this chapter are:
1. To introduce the tools used for the construction of 3D solid models.
2. To give examples of the construction of 3D solid models using tools from the Home/ Modeling panel.
3. To give examples of 2D outlines suitable as a basis for the construction of 3D solid models.
4. To give examples of constructions involving the Boolean operators Union, Subtract and Intersect.

\section*{Introduction}

As shown in Chapter 1 the AutoCAD coordinate system includes a third coordinate direction \(\mathbf{Z}\), which, when dealing with 2D drawing in previous chapters, has not been used. 3D model drawings make use of this third \(\mathbf{Z}\) coordinate.

\section*{The 3D Modeling workspace}

It is possible to construct 3D model drawings in the AutoCAD Classic or 2D Drafting \& Annotation workspaces, but in Part 2 of this book we will be working in the 3D Modeling workspace. To set this workspace click the Workspace Settings icon in the status bar and select 3D Modeling from the menu which appears (Fig. 12.1). The 3D Modeling workspace appears (Fig. 12.2).


Fig. 12.1 Selecting 3D Modeling from the Workspace Switching menu


Fig. 12.2 The 3D Modeling workspace in Parallel projection

The workspace in Fig. 12.2 shows grid lines in Parallel projection mode, brought about by entering perspective at the command line, followed by entering \(\mathbf{0}\) in response to the prompt which appears. This is the window in which the examples in this chapter will be constructed. Note the ViewCube at the top right-hand corner of the drawing area. In Fig. 12.2 this has been highlighted by moving the cursor onto the cube. Changes can be made to the appearance and uses of the cube in the ViewCube Settings dialog brought to screen from the right-click menu of the ViewCube (Fig. 12.3).


Fig. 12.3 The ViewCube Settings dialog

\section*{Methods of calling tools for 3D modelling}

The default 3D Modeling ribbon is shown in Fig. 12.4.


Fig. 12.4 The 3D Modeling panels

When calling the tools for the construction of 3D model drawings, similar methods can be used as when constructing 2D drawings. 3D tools can be called by:
1. A click on a tool icon in a 3D Modeling panel.
2. A click on a tool icon in the Modeling toolbar.
3. A click on the name of a tool from the Draw/Modeling drop-down menu.
4. Entering the tool name at the command line followed by pressing the Return button of the mouse or the Return key of the keyboard.
5. Some of the 3D tools have an abbreviation which can be entered at the command line instead of its full name.
6. Using the Dynamic Input method.

\section*{Notes}
1. As when constructing 2D drawings, no matter which method is used, and most operators will use a variety of these six methods, calling a tool results in prompt sequences appearing at the command prompt (or if using Dynamic Input on screen) as in the following example:
```

Command:enter box right-click
Specify first corner or [Center]:enter 90,120
right-click
Specify other corner or [Cube/Length]:enter
150,200
Specify height or [2Point]:enter 50
Or, if the tool is called from its tool icon, or
from a drop-down menu:
Command:_box
Specify first corner or [Center]:enter 90,120
right-click
Specify other corner or [Cube/Length]:enter
150,200
Specify height or [2Point]:enter 50

```
2. In the following pages, if the tool's sequences are to be repeated, they may be replaced by an abbreviated form such as:
```

Command: box

```
[prompts]: 90,120
[prompts]: 150,200

\section*{The Polysolid tool (Fig. 12.8)}


Fig. 12.5 Click Top in the ViewCube


Fig. 12.6 Selecting Isometric from the ViewCube


Fig. 12.8 Example polysolid
1. Make sure layer \(\mathbf{0}\) is current.
2. Click Top in the ViewCube (Fig. 12.5). The screen switches to a Top view.
3. Construct an octagon of edge length \(\mathbf{6 0}\) using the Polygon tool.
4. With click the house icon in the ViewCube (Fig. 12.6). The screen switches to an Isometric view.
5. Call the Polysolid tool with a click on its tool icon in the Home/ Modeling panel (Fig. 12.7). The command line shows:


Fig. 12.7 The Polysolid tool icon from the Draw/Modeling drop-down menu

Command: _Polysolid Height \(=0\), Width \(=0\), Justification \(=\) Center
Specify start point or [Object/Height/Width/ Justify] <Object>:enter h (Height)
Specify height \(<4>\) : 60
Height \(=60\), Width \(=0\), Justification \(=\) Center
Specify start point or [Object/Height/Width/ Justify] <Object>:enter w (Width)
Specify width <0>: 5
Height \(=60\), Width \(=5\), Justification \(=\) Center
Specify start point or [Object/Height/Width/
Justify] <Object>:right-click
Select object:pick the octagon
Command:
And the Polysolid forms (Fig. 12.8).

\section*{2D outlines suitable for 3D models}

When constructing 2D outlines suitable as a basis for constructing some forms of 3D model, select a tool from the Home/Draw panel, or enter tool


Fig. 12.10 Selecting the Region tool from the Home/Draw panel
names or abbreviations for the tools at the command line. If constructed using tools such as Line, Circle and Ellipse, before being of any use for 3D modelling, outlines must be changed into regions with the Region tool . Closed polylines can be used without the need to use the Region tool.

\section*{First example - Line outline \& Region (Fig. 12.9)}
1. Click Top in the ViewCube to switch the screen to Top view and Zoom to 1.
2. Construct the left-hand drawing of Fig. 12.9 using the Line tool.
3. Click the Region tool from the Home/Draw panel (Fig. 12.10), or select Region from the Draw drop-down menu, or from the Draw toolbar, or enter reg at the command line. The command line shows:


Fig. 12.9 First example - Line outline and Region

Command:_region
Select objects:window the drawing 12 found
Select objects:right-click
1 loop extracted.
1 Region created.
Command:
And the Line outline is changed to a Region - right-hand drawing in Fig. 12.9.

\section*{Second example - Union \& Subtract regions}
(Fig. 12.11)
1. In the ViewCube/Top view, construct drawing \(\mathbf{1}\) of Fig. 12.11 and with the Copy tool (Home/Modify panel), copy the drawing three times to produce drawings 2, 3 and 4.


Fig. 12.11 Second example - Union and Subtract of regions
2. With the Region tool change all the outlines into regions.
3. Drawing 2 - call the Union tool from the Home/Solid Editing panel (Fig. 12.12). The command line shows:


Fig. 12.12 The Union tool icon in the Home/Solid Editing panel

Command:_union
Select objects:pick the left-hand region 1 found
Select objects:pick the circular region 1 found, 2 total
Select objects:pick the right-hand region 1 found, 3 total
Command:
4. Drawing \(\mathbf{3}\) - with the Union tool form a union of the left-hand region and the circular region.
5. Drawing 4 - call the Subtract tool, also from the Home/Solid Editing panel. The command line shows:

Command:_subtract Select solids and regions to subtract from ...
Select objects:pick the region just formed 1 found
Select objects:right-click
Select solids and regions to subtract:pick the right-hand region 1 found
Select objects:right-click
Command:

\section*{The Extrude tool}

The Extrude tool can be called with a click in the Modeling toolbar, with a click on its name in the Draw/Modeling panel (Fig. 12.13), or by entering extrude or its abbreviation ext at the command line.


Fig. 12.13 The Extrude tool from the Draw/Modeling drop-down menu

\section*{Note}

In this chapter 3D models are shown in illustrations as they appear in the acadiso3D.dwt template screen. In later chapters, 3D models are sometimes shown in outline only. This is to allow the reader to see the parts of 3D models in future chapters more clearly in the illustrations.

\section*{Examples of the use of the Extrude tool}

The first two examples of forming regions given in Figures 12.10 and 12.11 are used to show the results of using the Extrude tool.

\section*{First example - Extrude (Fig. 12.14)}

From the first example of forming a region:
1. Call Extrude (Fig. 12.13). The command line shows:

Command:_extrude
Current wire frame density: ISOLINES=4
Select objects to extrude:pick region 1 found
Select objects to extrude:right click
Specify height of extrusion or [Direction/Path/
Taper angle] <45>:enter 50 right-click Command:
2. Select ViewCube/Isometric. The extrusion appears in an isometric view.
3. Call Zoom and zoom to \(\mathbf{1}\).

The result is shown in Fig. 12.14.

\section*{Notes}
1. In the above example we made use of an isometric view possible from the ViewCube (Fig. 12.5). The ViewCube can be manipulated to show a variety of views by dragging to its required positions under mouse control.
2. Note the Current wire frame density: ISOLINES \(=\mathbf{4}\) in the prompts sequence when Extrude is called. The setting of \(\mathbf{4}\) is suitable when extruding plines or regions consisting of straight lines, but when arcs are being extruded it may be better to set ISOLINES to a higher figure as follows:

Command:enter isolines right-click
Enter new value for ISOLINES <4>:enter 16 right-click
Command:

\section*{Second example - Extrude (Fig. 12.16)}

From the second example of forming a region:
1. Set ISOLINES to 16.
2. Call the Extrude tool. The command line shows:

Command: _extrude
Current wire frame density: ISOLINES=16


Fig. 12.15 Second example - new position of the ViewCube
```

Select objects to extrude:pick the region 1 found
Select objects to extrude:right-click
Specify height of extrusion or [Direction/Path/
Taper angle]:enter t right-click
Specify angle of taper for extrusion:enter 5
right-click
Specify height of extrusion or [Direction/Path/
Taper angle]:enter 100 right-click

```
Command:
3. Drag the ViewCube to a new view as shown in Fig. 12.15.
4. Zoom to 1 .

The result is shown in Fig. 12.16.


Fig. 12.16 Second example - Extrude

\section*{Third example - Extrude (Fig. 12.18)}

From the third example of forming a region:
1. Place the screen in the ViewCube/Top view and construct a rectangle of size \(\mathbf{8 0} \times \mathbf{5 0}\), filleted to a radius of \(\mathbf{1 5}\). Place the drawing in the View Cube/Front view and using the 3D Polyline tool from the Home/Draw panel (Fig. 12.17) construct a 3D polyline of three plines each of length \(\mathbf{4 5}\) and at \(\mathbf{4 5}^{\circ}\) to each other at the centre of the outline as shown in Fig. 12.18.
2. Place the screen in the ViewCube/Isometric view.
3. Set ISOLINES to 24.
4. Call the Extrude tool. The command line shows:

Command:enter ext right-click
Current wire frame density: ISOLINES \(=24\)
```

Select objects to extrude:pick the rectangle 1
found
Select objects to extrude:right-click
Specify height of extrusion or [Direction/Path/
Taper angle] <100 > :enter p right-click
Select extrusion path or [Taper angle]:pick the
path
Command:
The result is shown in Fig. 12.18.

```


Fig. 12.18 Third example - Extrude

\section*{The Revolve tool}

The Revolve tool can be called with a click on its tool icon in the Modeling toolbar, by a click on its tool icon in the Home/Modeling panel, by a click on its name in the Modeling sub-menu of the Draw drop-down menu, or by entering revolve or its abbreviation rev at the command line.

\section*{Examples of the use of the Revolve tool}

Solids of revolution can be constructed from closed plines or from regions.
First example - Revolve (12.21)
1. Construct the closed polyline Fig. 12.19.


Fig. 12.19 First example - Revolve. The closed pline
2. Set ISOLINES to \(\mathbf{2 4}\).
3. Call the Revolve tool from the Home/Modeling control panel (Fig. 12.20). The command line shows:

Command:
Command:_revolve
Current wire frame density: ISOLINES=24
Select objects to revolve:pick the polyline 1 found Select objects to revolve:right-click
Specify axis start point or define axis by [Object/
X/Y/Z] <Object>:pick
Specify axis endpoint:pick
Specify angle of revolution or [Start angle]
<360>:right-click
Command:


Fig. 12.20 The Revolve tool from the Home/3D Modeling panel

4. Place in the ViewCube/Isometric view. Zoom to \(\mathbf{1}\).

The result is shown in Fig. 12.21.

\section*{Second example - Revolve (Fig. 12.23)}
1. Place the screen in the ViewCube/Front view. Zoom to \(\mathbf{1}\).
2. Construct the pline outline (Fig. 12.22).


Fig. 12.22 Second example - Revolve. The pline outline
3. Set ISOLINES to \(\mathbf{2 4}\).
4. Call the Revolve tool and construct a solid of revolution.
5. Place the screen in the ViewCube/Isometric view. Zoom to \(\mathbf{1}\).


Fig. 12.23 Second example - Revolve

\section*{Third example - Revolve (Fig. 12.24)}
1. Construct the pline (left-hand drawing of Fig. 12.24). The drawing must be either a closed pline or a region.
2. Call Revolve and form a solid of revolution through \(180^{\circ}\).
3. Place the model in the ViewCube/Isometric view. Zoom to \(\mathbf{1}\).

The result is shown in Fig. 12.24 (right-hand drawing).


Fig. 12.24 Third example - Revolve. The outline to be revolved and the solid of revolution

\section*{Other tools from the Home/Modeling panel}

First example - Box (Fig. 12.26)
1. Place the window in the ViewCube/Front view.
2. Click the Box tool icon in the Home/Modeling panel (Fig. 12.25). The command line shows:


Fig. 12.25 Selecting the Box tool from the pop-up in the Home/ Modeling panel

Command:_box
Specify first corner or [Center]:enter 90,90 right-click
Specify other corner or [Cube/Length]:enter 110,-30 right-click
Specify height or [2Point]:enter 75 right-click Command:right-click
BOX Specify first corner or [Center]: 110,90
Specify other corner or [Cube/Length]: 170,70
Specify height or [2Point]: 75
Command:
BOX Specify first corner or [Center]: 110,-10
Specify other corner or [Cube/Length]: 200,-30
Specify height or [2Point]: 75
Command:
3. Place in the ViewCube/Isometric view. Zoom to \(\mathbf{1}\).
4. Call the Union tool from the Home/Solid Editing panel. The command line shows:

Command: union
Select objects:pick one of the boxes 1 found Select objects:pick the second of box 1 found, 2 total
Select objects:pick the third box 1 found, 3 total Select objects:right-click
Command:
Fig. 12.26 First example - Box

And the three boxes are joined in a single union. See Fig. 12.26.

\section*{Second example - Sphere and Cylinder (Fig. 12.27)}
1. Set ISOLINES to \(\mathbf{1 6}\).
2. Click the Sphere tool icon from the Home/Modeling panel. The command line shows:

Command:_sphere
Specify center point or [3P/2P/Ttr]: 180,170
Specify radius or [Diameter]: 50
Command:
3. Click the Cylinder tool icon in the Home/Modeling panel. The command line shows:
Command: \(\qquad\) cylinder
Specify center point of base or [3P/2P/Ttr/ Elliptical]: 180,170
Specify base radius or [Diameter]: 25
Specify height or [2Point/Axis endpoint]: 110
Command:
4. Place the screen in the ViewCube/Front view. Zoom to \(\mathbf{1}\).
5. With the Move tool (from the Home/Modify panel), move the cylinder vertically down so that the bottom of the cylinder is at the bottom of the sphere.
6. Click the Subtract tool icon in the Home/Solid Editing panel. The command line shows:

Command:_subtract Select solids and regions to subtract from ..
Select objects:pick the sphere 1 found


Fig. 12.27 Second example - Sphere and Cylinder


Fig. 12.28 Third example - Cylinder, Cone and Sphere

Select objects:right-click
Select solids and regions to subtract
Select objects:pick the cylinder 1 found
Select objects:right-click
Command:
7. Place the screen in the ViewCube/Isometric view. Zoom to \(\mathbf{1 .}\)

The result is shown in Fig. 12.27.

\section*{Third Example - Cylinder, Cone and Sphere (Fig. 12.28)}
1. Call the Cylinder tool and with a centre \(\mathbf{1 7 0 , 1 5 0}\) construct a cylinder of radius \(\mathbf{6 0}\) and height 15.
2. Click the Cone tool in the Home/Modeling panel. The command line shows:

Command:_cone
Specify center point of base or [3P/2P/Ttr/
Elliptical]: 170,150
Specify base radius or [Diameter]: 40
Specify height or [2Point/Axis endpoint/Top radius]: 150
Command:
3. Call the Sphere tool and construct a sphere of centre \(\mathbf{1 7 0 , 1 5 0}\) and radius 45.
4. Place the screen in the Front view and with the Move tool, move the cone and sphere so that the cone is resting on the cylinder and the centre of the sphere is at the apex of the cone.
5. Place in the ViewCube/Isometric view, Zoom to \(\mathbf{1}\) and with the Union tool form a single 3D model from the three objects.

The result is shown in Fig. 12.28.

\section*{Fourth Example - Box and Wedge (Fig. 12.29)}
1. Click the Box tool icon in the Home/Modeling panel and construct two boxes, the first of corners \(\mathbf{7 0 , 2 1 0}\) and \(\mathbf{2 9 0 , 1 2 0}\) of height \(\mathbf{1 0}\), the second of corners \(\mathbf{1 2 0 , 2 0 0 , 1 0}\) and \(\mathbf{2 4 0 , 1 2 0 , 1 0}\) and of height \(\mathbf{8 0}\).
2. Place the screen in the ViewCube/Front view and Zoom to \(\mathbf{1}\).
3. Click the Wedge tool icon in the Home/Modeling panel. The command line shows:

Command:_wedge
Specify first corner or [Center]: 120,170,10

Specify other corner or [Cube/Length]: 80,160,10
Specify height or [2Point]: 70
Command: right-click
WEDGE
Specify first corner of wedge or [Center]: 240,170,10
Specify corner or [Cube/Length]: 280,160,10


Fig. 12.29 Fourth example - Box and Wedge


Fig. 12.30 Fifth example - Cylinder and Torus
Specify height or [2Point]: 70
Command:
4. Place the screen in the ViewCube/Isometric view and Zoom to \(\mathbf{1}\).
5. Call the Union tool from the Home/Solid Editing panel and in response to the prompts in the tool's sequences pick each of the 4 objects in turn to form a union of the 4 objects.

The result is shown in Fig. 12.29.

\section*{Fifth Example - Cylinder and Torus (Fig. 12.30)}
1. Using the Cylinder tool from the Home/Modeling panel, construct a cylinder of centre \(\mathbf{1 8 0}, 160\), of radius 40 and height 120.
2. Click the Torus tool icon in the Home/Modeling panel. The command line shows:

Command:_torus
Specify center point or [3P/2P/Ttr]: 180,160,10
Specify radius or [Diameter]: 40
Specify tube radius or [2Point/Diameter]: 10
Command:right-click
TORUS
Specify center point or [3P/2P/Ttr]: 180,160,110
Specify radius or [Diameter] <40>:right-click
Specify tube radius or [2Point/Diameter] <10>: right-click
Command :
3. Call the Cylinder tool and construct another cylinder of centre 180,160 , of radius 35 and height 120.
4. Place in the ViewCube/Isometric view and Zoom to \(\mathbf{1}\).
5. Click the Union tool icon in the Home/Solid Editing panel and form a union of the larger cylinder and the two torii.
6. Click the Subtract tool icon in the Home/Solid Editing panel and subtract the smaller cylinder from the union.

The result is shown in Fig. 12.30.

\section*{The Chamfer and Fillet tools}

The Chamfer and Fillet tools from the Home/Modify panel (Fig. 12.31) used to create chamfers and fillets in 2D drawings in AutoCAD 2010 can just as well be used when constructing 3D models.


Fig. 12.31 The Chamfer and Fillet tools in the Home/Modify panel

\section*{Example - Chamfer and Fillet (Fig. 12.34)}
1. Working to the sizes given in Fig. 12.32 and using the Box and Cylinder tools, construct the 3D model in Fig. 12.33.
2. Place in the ViewCube/Isometric view. Union the two boxes and with the Subtract tool, subtract the cylinders from the union.


Fig. 12.32 Example - Chamfer and Fillet - sizes for the model


Fig. 12.33 Example - isometric view - Chamfer and Fillet - the model before using the tools

\section*{Note}

To construct the elliptical cylinder, call the Cylinder tool from the
Home/Modeling panel. The command line shows:
Command:_cylinder
Specify center point of base or [3P/2P/Ttr/
Elliptical]:enter e right-click
Specify endpoint of first axis or [Center]:
130,160
Specify other endpoint of first axis: 210,160
Specify endpoint of second axis: 170,180
Specify height or [2Point/Axis endpoint]: 50 Command:
3. Click the Fillet tool icon in the Home/Modify panel (Fig. 12.31). The command line shows:

Command:_fillet
Current settings: Mode=TRIM. Radius=1
Specify first object or [Undo/Polyline/Radius/Trim/
Multiple]:enter r (Radius) right-click
Specify fillet radius \(<1>: 10\)
Select first object:pick one corner
Select an edge or [Chain/Radius]:pick a second corner
Select an edge or [Chain/Radius]:pick a third corner
Select an edge or [Chain/Radius]:pick the fourth corner

Select an edge or [Chain/Radius]:right-click 4 edge(s) selected for fillet.
Command:
4. Click the Chamfer tool in the Home/Modify panel (Fig. 12.31). The command line shows:

Command:_chamfer
(TRIM mode) Current chamfer Dist1=1, Dist2=1
Select first line or [Undo/Polyline/Distance/
Angle/Trim/mEthod/Multiple]:enter d
(Distance)right-click
Specify first chamfer distance \(<1>: 10\)
Specify second chamfer distance <10>: 10
Select first line:pick one corner One side of the box highlights
Base surface selection ... Enter surface selection
[Next/OK (current)] <OK>:right click
Specify base surface chamfer distance <10>:
right-click
Specify other surface chamfer distance <10>:
right-click
Select an edge or [Loop]:pick the edge again
Select an edge:pick the second edge
Select an edge [or Loop]:right-click
Command:

And two edges are chamfered. Repeat to chamfer the other two edges.
Figure 12.34 shows the completed 3D model.


Fig. 12.34 Example - Chamfer and Fillet

\section*{Note on the tools Union, Subtract and Intersect}

The tools Union, Subtract and Intersect found in the Home/Solids
Editing panel are known as the Boolean operators after the mathematician
Boole. They can be used to form unions, subtractions or intersections between extrusions, solids of revolution, or any of the 3D Objects.

\section*{Note on using 2D Draw tools on 3D models}

As was seen when using the Move from the Home/Draw panel when working in the 2D Drafting \& Annotation workspace and the Chamfer and Fillet tools from the Home/Modify panel, so can other tools - Move, Copy, Mirror, Rotate and Scale from the Home/Modify panel in the 3D Modeling workspace - be used in connection with the construction of 3D models.

\section*{Constructing 3D surfaces using the Extrude tool}

In this example of the construction of a 3D surface model the use of the Dynamic Input (DYN) method of construction will be shown.
1. Place the AutoCAD drawing area in the ViewCube/Isometric view.
2. Click the Dynamic Input button in the status bar to make dynamic input active.

\section*{Example - Dynamic Input (Fig. 12.36)}
1. Using the Line tool from the Home/Draw panel construct the outline (Fig. 12.35).


Fig. 12.35 Example - constructing the Line outline
2. Call the Extrude tool and window the line outline.
3. Extrude to a height of \(\mathbf{1 0 0}\).

The stages of producing the extrusion are shown in Fig. 12.35 and Fig. 12.36. The resulting 3D model is a surface model.

\section*{Note}

The resulting 3D model shown in Fig. 12.36 is a surface model because the extrusion was constructed from an outline consisting of lines, which are individual objects in their own right. If the outline had been a polyline, the resulting 3D model would have been a solid model.


Eeccr cocsane comter


Fig. 12.36 Example - Dynamic Input

\section*{The Sweep tool}

To call the Sweep tool, click on its tool icon in the Home/Modeling panel (Fig. 12.37).


Fig. 12.38 Example Sweep - the outline to be swept


Fig. 12.39 Example
Sweep - the pline path


Fig. 12.40 ExampleSweep


Fig. 12.37 Selecting the Sweep tool from the Home/Modeling panel

Example - Sweep (Fig. 12.40)
1. Construct the pline outline Fig. 12.38 in the ViewCube/Top view.
2. Change to the ViewCube/Front view, Zoom to \(\mathbf{1}\) and construct a pline as shown in Fig. 12.39 as a path central to the ellipse.
3. Place the window in a ViewCube/Isometric view and click the Sweep tool icon (Fig. 12.37). The command line shows:

Command:_sweep
Current wire frame density: ISOLINES=4
Select objects to sweep:pick the ellipse 1 found
Select objects to sweep:right-click
Select sweep path or [Alignment/Base point/Scale/ Twist]:pick the pline
Command:
The result is shown in Fig. 12.40.

\section*{The Loft Tool}

To call the Left tool, click on its icon in the Home/Modeling panel.

\section*{Example - Loft (Fig. 12.43)}
1. Construct the seven circles shown in Fig. 12.41 at vertical distances of 30 units apart.
2. Place the drawing area in the ViewCube/Isometric view.
3. Call the Loft tool with a click on its tool icon in the Home/Modeling panel (Fig. 12.42).
4. The command line shows:

Command:_loft
Select cross-sections in lofting order:<Snap off>pick the bottom circle 1 found
Select cross-sections in lofting order:pick the next circle 1 found, 2 total
Select cross-sections in lofting order:pick the next circle 1 found, 3 total
Select cross-sections in lofting order:pick the next circle 1 found, 4 total


Fig. 12.41 Example Loft - the cross sections

Select cross-sections in lofting order:pick the next circle 1 found, 5 total

Select cross-sections in lofting order:pick the next circle 1 found, 6 total
Select cross-sections in lofting order:pick the next circle 1 found, 7 total
Select cross-sections in lofting order:
right-click
And the Loft Settings dialog appears (Fig. 12.43).


Fig. 12.42 Selecting the Loft tool from the Home/Modeling panel


Fig. 12.44 Example Loft


Fig. 12.43 The Loft Settings dialog
5. Click the Smooth Fit radio button to make it active, followed by a click on the OK button. The loft appears.

The result is shown in Fig. 12.44.

\section*{REVISION NOTES}
1. In the AutoCAD 3D coordinate system, positive \(Z\) is towards the operator away from the monitor screen.
2. A 3D face is a mesh behind which other details can be hidden.
3. The Extrude tool can be used for extruding closed plines or regions to stated heights, to stated slopes or along paths.
4. The Revolve tool can be used for constructing solids of revolution through any angle up to \(360^{\circ}\).
5. 3D models can be constructed from the 3D objects Box, Sphere, Cylinder, Cone, Torus and Wedge. Extrusions and/or solids of revolutions may form part of models constructed using the 3D objects.
6. Tools such as Chamfer and Fillet from the Home/Modify panel can be used when constructing 3D models.
7. The tools Union, Subtract and Intersect are known as the Boolean operators.
8. When polylines forming an outline which is not closed are acted upon by the Extrude tool the resulting models will be 3D Surface models.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/ 978-1-85617-868-6

The exercises that follow require the use of tools from the Home/Modeling panel in association with tools from other panels.
1. Figure 12.45 shows the pline outline from which the polysolid outline Fig. 12.46 has been constructed to a height of 100 and Width of 3. When the polysolid has been
constructed, construct extrusions which can then be subtracted from the polysolid. Sizes of the extrusions are left to your judgement.


Fig. 12.45 Exercise 1 - outline for polyline


Fig. 12.46 Exercise 1 - polysolid outline
2. Figure 12.47 shows a 3D model constructed from four polysolids which have been formed into a union using the Union tool from the Home/Modify panel. The original polysolid was formed from a hexagon of edge length 30. The original polysolid was of height 40 and Width 5. Construct the union.


Fig. 12.47 Exercise 2
3. Figure 12.48 shows the 3D model from Exercise 2 acted upon by the Presspull tool which can be called by entering presspull at the command line. With the 3D model from Exercise 2 on screen and using the Presspull tool, construct the 3D model shown in Fig. 12.48. The distance of the pull can be estimated.


Fig. 12.48 Exercise 3
4. Construct the 3D model of a wine glass as shown in Fig. 12.50, working to the dimensions given in the outline drawing Fig. 12.49.

You will need to construct the outline and change it into a region before being able to change the outline into a solid of revolution using the Revolve tool from the Home/Modeling panel. This is because the semi-elliptical part of the outline has been constructed using the Ellipse tool, resulting in part of the outline being a spline, which cannot be acted upon by Polyline Edit to form a closed pline.


Fig. 12.49 Exercise 4 - outline drawing


Fig. 12.50 Exercise 4
5. Figure 12.51 shows the outline from which a solid of revolution can be constructed. Use the Revolve tool from the Home/Modeling panel to construct the solid of revolution.
6. Construct a 3D solid model of a bracket working to the information given in Fig. 12.52.
7. Working to the dimensions given in Fig. 12.53 construct an extrusion of the plate to a height of 5 units.


Fig. 12.51 Exercise 5


Fig. 12.52 Exercise 6


Fig. 12.53 Exercise 7
8. Working to the details given in the orthographic projection Fig. 12 54, construct a 3D model of the assembly. After constructing the pline outline(s) required for the solid(s) of
revolution, use the Revolve tool to form the 3D solid.
9. Working to the polylines shown in Fig. 12.55 construct the Sweep shown in Fig. 12.56.


A


Fig. 12.54 Exercise 8


Fig. 12.55 Exercise 9 - profile and path dimensions

Fig. 12.56 Exercise 9
10. Construct the cross-sections as shown in Fig. 1257 working to suitable dimensions. From the cross-sections construct the lofts shown in Fig. 12 58. The lofts are topped with a sphere constructed using the Sphere tool.


Fig. 12.57 The cross-sections for Exercise 10


Fig. 12.58 Exercise 10

\section*{Chapter 13}

\section*{3D models in viewports}

\section*{AIM OF THIS CHAPTER}

The aim of this chapter is to give examples of 3D solid models constructed in multiple viewport settings.

\section*{Setting up viewport systems}

One of the better methods of constructing 3D models is in different multiple viewports. This allows what is being constructed to be seen from a variety of viewing positions. To set up multiple viewports:
1. In a 3D Modeling workspace click New in the View/Viewports panel (Fig. 13.1). The Viewports dialog appears (Fig. 13.2).


Fig. 13.1 Selecting New from the View/Viewports panel


Fig. 13.2 The Viewports dialog
2. A number of named viewports systems appear in the Standard Viewports list in the dialog.
3. Click the name Four: Equal, followed by a click on 3D in the Setup pop-up list. A preview of the Four: Equal viewports screen appears showing the views appearing in each of the four viewports.
4. Click in each viewport in the dialog in turn, followed by selecting Realistic from the Visual Style pop-up list.
5. Click the OK button of the dialog and the AutoCAD 2010 drawing area appears showing the four viewport layout.
6. Click in each viewport in turn and Zoom to \(\mathbf{1}\).

The result is shown in Fig. 13.3.


Fig. 13.3 The Four: Equal viewports layout

\section*{First example - Four: Equal viewports (Fig. 13.7)}

Figure 13.4 shows a first angle orthographic projection of a support. To construct a Scale 1:1 3D model of the support in a Four: Equal viewport setting:
1. Click View in the View/Viewports panel. In the Viewports dialog make sure the 3D option is selected from the Setup pop-up list and Realistic from the Visual Style pop-up menu and click the OK button of the dialog. The AutoCAD 2010 drawing area appears in a Four: Equal viewport setting.


Fig. 13.4 Orthographic projection of the support for the first example
2. Click in each viewport in turn, making the selected viewport active, and Zoom to 1.
3. Using the Polyline tool, construct the outline of the plan view of the plate of the support, including the holes in the Top viewport (Fig. 13.5). Note the views in the other viewports.


Fig. 13.5 First example - the view outlines
4. Call the Extrude tool from the Home/Modeling panel and extrude the plan outline and the circles to a height of \(\mathbf{2 0}\).
5. With Subtract from the Home/Solids Editing panel, subtract the holes from the plate (Fig. 13.6).


Fig. 13.6 First example - the four views after using the Extrude and Subtract tools
6. Call the Box tool and in the centre of the plate construct a box of Width \(=\mathbf{6 0}\), Length \(=\mathbf{6 0}\) and Height \(=\mathbf{3 0}\).
7. Call the Cylinder tool and in the centre of the box construct a cylinder of Radius \(=\mathbf{2 0}\) and of Height \(=\mathbf{3 0}\).
8. Call Subtract and subtract the cylinder from the box.
9. Click in the Right viewport. With the Move tool, move the box and its hole into the correct position with regard to the plate.
10. With Union, form a union of the plate and box.
11. Click in the Front viewport and construct a triangle of one of the webs attached between the plate and the box. With Extrude, extrude the triangle to a height of \(\mathbf{1 0}\). With the Mirror tool, mirror the web to the other side of the box.
12. Click in the Right viewport and, with the Move tool, move the two webs into their correct position between the box and plate. Then, with Union, form a union between the webs and the 3D model.
13. In the Right viewport, construct the other two webs and in the Front viewport, move, mirror and union the webs as in steps \(\mathbf{1 1}\) and \(\mathbf{1 2}\).

Figure 13.7 shows the resulting 4 -viewport scene.


Fig. 13.7 First example - Four: Equal viewports

\section*{Second example - Four: Left viewports (Fig. 13.9)}
1. Open the Four: Left viewport layout from the Viewports dialog.
2. Make a new layer of colour magenta and make that layer current.
3. In the Top viewport construct an outline of the web of the Support Bracket shown in Fig. 13.8. With the Extrude tool, extrude the parts of the web to a height of \(\mathbf{2 0}\).


Fig. 13.8 Working drawing for the second example
4. With the Subtract tool, subtract the holes from the web.
5. In the Top viewport, construct two cylinders central to the extrusion, one of radius \(\mathbf{5 0}\) and height \(\mathbf{3 0}\), the second of radius \(\mathbf{4 0}\) and height \(\mathbf{3 0}\). With the Subtract tool, subtract the smaller cylinder from the larger.
6. Click in the Front viewport and move the cylinders vertically by \(\mathbf{5}\) units. With Union form a union between the cylinders and the web.
7. Still in the Front viewport and at one end of the union, construct two cylinders, the first of radius \(\mathbf{1 0}\) and height \(\mathbf{8 0}\), the second of radius \(\mathbf{1 5}\) and height 80. Subtract the smaller from the larger.
8. With the Mirror tool, mirror the cylinders to the other end of the union.
9. Make the Top viewport current and, with the Move tool, move the cylinders to their correct position at the ends of the union. Form a union between all parts on screen.
10. Make the Isometric viewport current. From the Home/View panel select Conceptual.

Figure 13.9 shows the result.


Fig. 13.9 Second example - Four: Left viewports

\section*{Third example - Three: Right viewports (Fig. 13.11)}
1. Open the Three: Right viewport layout from the Viewports dialog. Make sure the 3D setup is chosen.
2. Make a new layer of colour Green and make that layer current.
3. In the Front viewport (top left-hand), construct a pline outline to the dimensions in Fig. 13.10.
4. Call the Revolve tool from the Home/Modeling panel and revolve the outline through \(360^{\circ}\).
5. In each of the three viewports in the Home/View panel select Conceptual from its pop-up list.

The result is shown in Fig. 13.11.


Fig. 13.10 Third example - outline for solid of revolution


Fig. 13.11 Third example - Three: Right viewports

\section*{Notes}
1. When working in viewport layouts such as in the above three examples, it is important to make good use of the Zoom tool, mainly because the viewports are smaller than the single viewport when working in AutoCAD 2010.
2. As in all other forms of constructing drawings in AutoCAD 2010 frequent toggling of SNAP, ORTHO and GRID will allow speedier and more accurate working.

\section*{REVISION NOTES}
1. Outlines suitable for use when constructing 3 D models can be constructed using the 2 D tools such as Line, Arc, Circle and polyline. Such outlines must be changed either to closed polylines or to regions before being incorporated in 3D models.
2. The use of multiple viewports can be of value when constructing 3D models in that various views of the model appear, enabling the operator to check the accuracy of the 3D appearance throughout the construction period.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/ 978-1-85617-868-6
1. Using the Cylinder, Box, Sphere, Wedge and Fillet tools, together with the Union and Subtract tools and working to any sizes thought suitable, construct the "head" as shown in the Three: Right viewport in Fig. 13.12.


Fig. 13.12 Exercise 1
2. Using the tools Sphere, Box, Union and Subtract and working to the dimensions given in Fig. 13.14, construct the 3D solid model as shown in the isometric drawing Fig. 13.13.


Fig. 13.13 Exercise 2


Fig. 13.14 Exercise 2 - working drawing
3. Each link of the chain shown in Fig. 13.15 has been constructed using the tool Extrude and extruding a small circle along an elliptical path. Copies of the link were then made, half of which were rotated in a Right view and
then moved into their position relative to the other links. Working to suitable sizes construct a link and from the link construct the chain as shown.


Fig. 13.15 Exercise 3
4. A two-view orthographic projection of a rotatable lever from a machine is given in Fig. 13.16 together with an isometric drawing of the 3D model constructed to the details given in the drawing Fig. 13.17. Construct the 3D model drawing in a Four: Equal viewport setting.


Fig. 13.16 Exercise 4 - orthographic projection
5. Working in a Three: Left viewport setting, construct a 3D model of the faceplate to the dimensions given in Fig. 13.18. With the Mirror tool, mirror the model to obtain an opposite-facing model. In the Isometric viewport call the Hide tool (Fig. 13.19).


Fig. 13.18 Exercise 5 - dimensions


Fig. 13.19 Exercise 5


Fig. 13.17 Exercise 4

\section*{Chapter 14}

\section*{The modification of 3D models}

\section*{AIMS OF THIS CHAPTER}

The aims of the chapter are:
1. To demonstrate how 3D models can be saved as blocks for insertion into other drawings via the DesignCenter.
2. To show how a library of 3D models in the form of blocks can be constructed to enable the models to be inserted into other drawings.
3. To give examples of the use of the tools from the Home/Modify panel:

3D Array - Rectangular and Polar 3D arrays.
3D Mirror.
3D Rotate.
4. To give examples of the use of the Section tool from the Home/Section panel.
5. To give examples of the use of the Helix tool.
6. To give an example of construction involving Dynamic Input.
7. To show how to obtain different views of 3D models in 3D space using the ViewCube, by selection from the Home/View Panel and using Viewpoint Presets.
8. To give simple examples of surfaces using Extrude.

\section*{Creating 3D model libraries}

In the same way as 2D drawings of parts such as electronics symbols, engineering parts, building symbols and the like can be saved in a file as blocks and then opened into another drawing by dragging the appropriate block drawing from the DesignCenter, so can 3D models.

\section*{First example - inserting 3D blocks (Fig. 14.4)}
1. Construct 3D models of the parts for a lathe milling wheel holder to details as given in Fig. 14.1, each on a layer of different colours.


Fig. 14.1 The components of a lathe milling wheel holder
2. Save each of the 3D models of the parts to file names as given in Fig. 14.1 as blocks using Create from the Insert/Block panel. Save all seven blocks and delete the drawings on screen. Save the drawing with its blocks to a suitable file name (Fig01.dwg).
3. Set up a Four: Equal viewports setting.
4. Open the DesignCenter from the View/Palettes panel (Fig. 14.2) or by pressing the Ctrl and \(\mathbf{2}\) keys of the keyboard.


Fig. 14.2 Calling the DesignCenter from the View/Palettes panel
5. In the DesignCenter click the directory Chapter14, followed by another click on Fig01.dwg and yet another click on Blocks. The saved blocks appear as icons in the right-hand area of the DesignCenter.
6. Drag and drop the blocks one by one into one of the viewports on screen. Figure 14.3 shows the Nut block ready to be dragged into the Right viewport. As the blocks are dropped on screen, they will need moving into their correct positions in suitable viewports using the Move tool from the Home/Modify panel.


Fig. 14.3 First example - Inserting 3D blocks
7. Using the Move tool, move the individual 3D models into their final places on screen and shade the Isometric viewport using Conceptual shading from the Home/View panel (Fig. 14.4).


Fig. 14.4 First example - Inserting 3D blocks

\section*{Notes}
1. It does not matter which of the four viewports any one of the blocks is dragged and dropped into. The part automatically assumes the view of the viewport.
2. If a block destined for layer \(\mathbf{0}\) is dragged and dropped into the layer Centre (which in our acadiso.dwt is of colour red and of linetype CENTER2), the block will take on the colour (red) and linetype of that layer (CENTER2).
3. In this example, the blocks are 3D models and there is no need to use the Explode tool option.


Fig. 14.5 Second example - the five fastenings

\section*{Second example - a library of fastenings (Fig. 14.6)}
1. Construct 3D models of a number of engineering fastenings. The number constructed does not matter. In this example only five have been constructed - a 10 mm round-head rivet, a 20 mm countersunkhead rivet, a cheese-head bolt, a countersunk-head bolt and a hexagonal-head bolt together with its nut (Fig. 14.5). With the Create tool save each separately as a block, erase the original drawings and save the file to a suitable file name - in this example Fig05.dwg.
2. Open the DesignCenter, click on the Chapter 14 directory, followed by a click on Fig05.dwg. Then click again on Blocks in the content list of Fig05.dwg. The five 3D models of fastenings appear as icons in the right-hand side of the DesignCenter (Fig. 14.6).


Fig. 14.6 Second example - a library of fastenings
3. Such blocks of 3D models can be dragged and dropped into position in any engineering drawing where the fastenings are to be included.

\section*{Constructing a 3D model (Fig. 14.9)}

A three-view projection of a pressure head is shown in Fig. 14.7. To construct a 3D model of the head:
1. Set the ViewCube/Front view.
2. Construct the outline to be formed into a solid of revolution (Fig. 14.8) on a layer colour magenta and, with the Revolve tool, produce the 3D model of the outline.


Fig. 14.8 Example of constructing a 3D model - outline for solid of revolution

\(\underline{\varnothing 90}\)


Fig. 14.7 Orthographic drawing for the example of constructing a 3D model
3. Set the ViewCube/Top view and with the Cylinder tool, construct cylinders as follows:
In the centre of the solid - radius 50 and height 50.
With the same centre - radius \(\mathbf{4 0}\) and height \(\mathbf{4 0}\). Subtract this cylinder from that of radius \(\mathbf{5 0}\).
At the correct centre - radius \(\mathbf{1 0}\) and height \(\mathbf{2 5}\).
At the same centre - radius 5 and height \(\mathbf{2 5}\). Subtract this cylinder from that of radius \(\mathbf{1 0}\).
4. With the Array tool, form a polar 6 times array of the last two cylinders based on the centre of the 3D model.
5. Set the ViewCube/Front view.
6. With the Move tool, move the array and the other two cylinders to their correct positions relative to the solid of revolution so far formed.
7. With the Union tool form a union of the array and other two solids.
8. Set the ViewCube/Right view.
9. Construct a cylinder of radius \(\mathbf{3 0}\) and height \(\mathbf{2 5}\) and another of radius \(\mathbf{2 5}\) and height \(\mathbf{6 0}\) central to the lower part of the 3D solid so far formed.
10. Set the ViewCube/Top view and with the Move tool move the two cylinders into their correct position.


Fig. 14.9 Example of constructing a 3D model
11. With the Union tool, form a union between the radius \(\mathbf{3 0}\) cylinder and the 3D model and with the Subtract tool, subtract the radius 25 cylinder from the 3D model.
12. Click Conceptual in the Home/View panel list.

The result is given in Fig. 14.9.

\section*{Note}

This 3D model could equally as well have been constructed in a threeor four-viewports setting.

\section*{The 3D Array tool}

First example - a Rectangular Array (Fig. 14.12)


Fig. 14.10 Example 3D Array - the star pline
1. Construct the star-shaped pline on a layer colour green (Fig. 14.10) and extrude it to a height of \(\mathbf{2 0}\).
2. Click on the 3D Array icon in the Modify/3D Operations drop-down menu (Fig. 14.11). The command line shows:

Command:_3darray
Select objects:pick the extrusion 1 found
Select objects:right-click
Enter the type of array [Rectangular/Polar]
<R>:right-click
Enter the number of rows (-) <1>:enter 3 right-click
Enter the number of columns (III):enter 3 right-click
Enter the number of levels (...):enter 4 right-click
Specify the distance between rows (-):enter 100 right-click
Specify the distance between columns (III):enter 100 right-click
Specify the distance between levels (...):enter 300 right-click
Command:
3. Place the screen in the ViewCube/Isometric view.
4. Shade using the Home/View/Conceptual visual style (Fig. 14.12).


Fig. 14.12 First example - a 3D Rectangular Array


Fig. 14.11 Selecting 3D Array from the Modify/3D Operations drop-down menu

\section*{Second example - a Polar Array (Fig. 14.13)}
1. Use the same star-shaped 3D model.
2. Call the 3D Array tool again. The command line shows:

Command:_3darray
Select objects:pick the extrusion 1 found
Select objects: right-click
Enter the type of array [Rectangular/Polar]
<R>:enter p (Polar)right-click
Enter number of items in the array: 12
Specify the angle to fill (+=ccw), -=cw)
<360>:right-click
Rotate arrayed objects? [Yes/No] <Y>:
right-click
Specify center point of array: 235,125
Specify second point on axis of rotation: 300,200
Command:
3. Place the screen in the ViewCube/Isometric view.
4. Shade using the Home/View/Conceptual visual style (Fig. 14.13).


Fig. 14.13 Second example - a 3D Polar Array


Fig. 14.14 Third example - a 3D Polar Array - the 3D model to be arrayed

\section*{Third example - a Polar Array (Fig. 14.15)}
1. Working on a layer of colour red, construct a solid of revolution in the form of an arrow to the dimensions as shown in Fig. 14.14.
2. Click 3D Array from the Modify/3D Operations drop-down menu. The command line shows:

Command:_3darray
select objects:pick the arrow 1 found
Select objects:right-click
Enter the type of array [Rectangular/Polar]
\(<\mathrm{R}>:\) enter p right-click
Enter the number of items in the array:enter 12
right-click
Specify the angle to fill (+=ccw, -=cw)
<360>:right-click
Rotate arrayed objects? [Yes/No] <Y>:
right-click
Specify center point of array:enter 40,170,20 right-click
Specify second point on axis of rotation: enter 60,200,100 right-click
Command:
3. Place the array in the ViewCube/Isometric view and shade to Visual Styles/Realistic. The result is shown in Fig. 14.15.


Fig. 14.15 Third example - a 3D Polar Array

\section*{The 3D Mirror tool}

\section*{First example - 3D Mirror (Fig. 14.18)}


Fig. 14.16 First example - 3D Mirror outline of object to be mirrored
1. Working on a layer colour green, construct the outline Fig. 14.16.
2. Extrude the outline to a height of \(\mathbf{2 0}\).
3. Extrude the region to a height of \(\mathbf{5}\) and render. A Conceptual style shading is shown in Fig. 14.17 (left-hand drawing).


Fig. 14.17 First example - 3D Mirror - before and after mirror
4. Click on 3D Mirror in the Modify 3D Operations drop-down menu.

The command line shows:
Command:_3dmirror
Select objects:pick the extrusion 1 found
Select objects:right-click
Specify first point of mirror plane (3 points):pick
Specify second point on mirror plane:pick
Specify third point on mirror plane or [Object/
Last/Zaxis/View/XY/YZ/ZX/3points]:enter .xy
right-click
of (need Z):enter 1 right-click
Delete source objects? [Yes/No]:
<N>:right-click
Command:
The result is shown in the right-hand illustration of Fig. 14.17.

\section*{Second example - 3D Mirror (Fig. 14.19)}
1. Construct a solid of revolution in the shape of a bowl in the ViewCube/ Front view working on a layer of colour yellow (Fig. 14.18).


Fig. 14.18 Second example - 3D Mirror - the 3D model
2. Click 3D Mirror in the Modify/3D Operations drop-down menu. The command line shows:

Command:_3dmirror
Select objects: pick the bowl 1 found
select objects: right-click
Specify first point on mirror plane (3 points): pick
Specify second point on mirror plane:pick
specify third point on mirror plane:enter .xy right-click
(need Z) :enter 1 right-click
Delete source objects:? [Yes/No]: <N>:right-click
Command :
The result is shown in Fig. 14.19.
3. Place in the ViewCube/Isometric view.
4. Shade using the Home/View/Conceptual visual style (Fig. 14.19).


Fig. 14.19 Second example - 3D Mirror - the result in a front view

\section*{The 3D Rotate tool}

\section*{Example - 3D Rotate (Fig. 14.20)}
1. Use the same 3D model of a bowl as for the last example. Call the 3D

Rotate tool from the Modify/3D Operations drop-down menu. The command line shows:

Command:pick 3D Rotate from the Modify drop-down menu

\section*{3DROTATE}

Current positive angle in UCS:
ANGDIR=counterclockwise ANGBASE=0
Select objects:pick the bowl 1 found
Select objects:right-click
Specify base point:pick the centre bottom of the bowl Specify rotation angle or [Copy/Reference] <0>: enter 60 right-click
Command

Fig. 14.20 Example 3D Rotate
3. Place in the ViewCube/Isometric view and in Conceptual shading.

The result is shown in Fig. 14.20.

\section*{The Slice tool}

\section*{First example - Slice (Fig. 14. 24)}
1. Construct a 3D model of the rod link device shown in the two-view projection Fig. 14.21 on a layer colour green.


Fig. 14.21 First example - Slice - the two-view drawing
2. Place the 3D model in the ViewCube/Top view.
3. Call the Slice tool from the Home/Solid Editing panel (Fig. 14.22).


Fig. 14.22 The Slice tool icon from the Home/Solid Editing panel

The command line shows:
Command:_slice
Select objects:pick the 3D model
Select objects to slice:right-click
Specify start point of slicing plane or [planar Object/Surface/Zaxis/View/XY/YZ/ZX/3points]
<3points>:pick
Specify second point on plane:pick
Specify a point on desired side or [keep Both sides] <Both>:right-click
Command:


Figure. 14.23 First example - Slice - the pick points

Figure 14.23 shows the picked points.
4. With the Move tool, move the lower half of the sliced model away from the upper half.
5. Place the 3D model(s) in the ViewCube/Isometric view.

Fig. 14.24 First example - Slice
6. Shade in Conceptual visual style. The result is shown in Fig. 14.24.

\section*{Second example - Slice (Fig. 14.25)}
1. Construct the closed pline (left-hand drawing Fig. 14.25) and, with the Revolve tool, form a solid of revolution from the pline.
2. With the Slice tool and working to the same sequence as for the first Slice example, form two halves of the 3D model and render.

The right-hand illustration of Fig. 14.25 shows the result.


Fig. 14.25 Second example - Slice

\section*{The Section Plane tool}

\section*{Example - Section Plane (Fig. 14.28)}
1. Construct a 3D model to the information given in Fig. 14.27 on layers of different colours. Note there are three objects in the model - a box, a lid and a cap.
2. Place the model in the Front view, Zoom to \(\mathbf{1}\) and Move its parts apart.
3. Make a new layer Hatch of colour magenta.
4. Place the model in a Top view.
5. Click the Section Plane tool icon in the Home/Section panel (Fig. 14.26).

The command line shows:
Command:_sectionplane Select face or any point to locate section line or [Draw section/ Orthographic]:enter o right-click


Fig. 14.26 Example - Section Plane tool in the Home/Section panel


Fig. 14.27 Example - Section Plane - orthographic projection

Align section to: [Front/Back/Top/Bottom/Left/
Right] <Top>:enter f right-click
Command:
The result is shown in Fig. 14.28.
6. At the command line enter sectionplanesettings. The Section Settings dialog appears. Click the Select Section Plane icon in the dialog. The dialog disappears. Click the section plane. The dialog reappears (Fig. 14.29).
7. Make settings in the dialog as shown and click the dialog's OK button.

The result is shown in Fig. 14.30.


Fig. 14.28 Example Section Plane - the section plane in a ViewCube/Front view


Fig. 14.29 The Section Settings dialog


Fig. 14.30 Example - Section Plane

\section*{Views of 3D models}


Worid-Space
Fig. 14.31 The ViewCube in its isometric position

Some of the possible viewing positions of a 3D model which can be obtained by using the ViewCube have already been seen in this book. Figure 14.33 shows the viewing positions of the 3D model of the arrow (Fig. 14.32) using the viewing positions from the ViewCube. A click on the house icon at the top left-hand of the ViewCube presents an isometric view (Fig. 14.31).


Fig. 14.32 Two views of the arrow


Fig. 14.33 The views using the ViewCube

\section*{The Viewpoint Presets dialog}

Other methods of obtaining a variety of viewing positions of a 3D model are:
1. The UCS, described in a later chapter.
2. By selection from the Unsaved View pop-up menu in the Home/View panel (Fig. 14.34).
3. Using the Viewpoint Presets dialog called with a click on view names in the View/3D Views drop-down menu (Fig. 14.35).

The Viewpoint Presets dialog appears with a 3D model on screen.
Entering figures for degrees in the \(\mathbf{X}\) Axis and XY Plane fields followed by a click on the dialog's OK button causes the model to take up the viewing position indicated by these two angles.

\section*{Note}

In the Viewpoint Presets dialog the Relative to UCS radio button must be checked on to allow the 3D model to position along the two angles.


Fig. 14.34 Calling views from the Home/View panel


Fig. 14.35 Example - Viewpoint Presets

\section*{Example - Viewpoint Presets}
1. With the 3D model of the arrow on screen, click Viewpoint Presets... in the 3D Views sub-menu of the Views drop-down menu. The dialog appears.
2. Enter \(\mathbf{3 3 0 . 0}\) in the From \(\mathbf{X}\) Axis and \(\mathbf{- 3 0 . 0}\) in the From XY Plane fields and click the OK button of the dialog.
3. The 3D model takes up the viewing position indication by the two angles (Fig. 14.35).

\section*{Using Dynamic Input to construct a helix}

As with all other tools (commands) in AutoCAD 2010 a helix can be formed working with the Dynamic Input (DYN) system. Figure 14.37 shows the stages \((\mathbf{1}\) to \(\mathbf{5})\) in the construction of the helix in the second example.

Set DYN on with a click on its button in the status bar.
1. Click the Helix tool icon in the Home/Draw panel (Fig. 14.36). The first of the DYN prompts appears. Enter the following at the command line using the down key of the keyboard when necessary.


Fig. 14.36 The Helix tool in the Home/Draw panel

Command:_Helix
Number of turns \(=10\) Twist \(=\) CCW
Specify center point of base:enter 95,210
Specify base radius or [Diameter]:enter 55
Specify top radius or [Diameter]:enter 35
```

Specify helix height or [Axis endpoint/Turns/Turn
Height/Twist]:enter 100
Command:

```

Figure 14.37 shows the sequence of DYN tooltips and the completed helix.


Fig. 14.37 Constructing the helix for the second example with the aid of DYN

As mentioned on page 243 surfaces can be formed using the Extrude tool on lines and polylines. Two examples are given below in Figures 14.39 and 14.41.

\section*{First example - 3D Surface (Fig. 14.39)}
1. In the ViewCube/Top view, on a layer colour magenta, construct the polyline Fig. 14.38.
2. In the ViewCube/Isometric view, call the Extrude tool from the Home/Modeling control and extrude the polyline to a height of \(\mathbf{8 0}\). The result is shown in Fig. 14.39.


Fig. 14.38 First example - 3D Surface - polyline to be extruded


Fig. 14.39 First example - 3D Surface

\section*{Second example - 3D Surface (Fig. 14.41)}
1. In the Top view on a layer colour red construct the circle Fig. 14.40.

Using the Break tool break the circle as shown.


Fig. 14.40 Second example - 3D Surface - the part circle to be extruded
2. In the ViewCube/Isometric view, call the Extrude tool and extrude the part circle to a height of \(\mathbf{8 0}\). Shade in the Realistic visual style.

The result is shown in Fig. 14.41.


Fig. 14.41 Second example - 3D Surface

\section*{REVISION NOTES}
1. 3 D models can be saved as blocks in a similar manner to the method of saving 2 D drawings as blocks.
2. Libraries can be made up from 3D model drawings.
3. 3D models saved as blocks can be inserted into other drawings via the DesignCenter.
4. Arrays of 3D model drawings can be constructed in 3D space using the 3D Array tool.
5. 3D models can be mirrored in 3D space using the 3D Mirror tool.
6. 3D models can be rotated in 3D space using the 3D Rotate tool.
7. 3D models can be cut into parts with the Slice tool.
8. Sectional views can be obtained from 3D models using the Section Plane and Section Settings dialog.
9. Helices can be constructed using the Helix tool.
10. Both the ViewCube and Viewpoint Presets can be used for the placing of 3D models in different viewing positions in 3D space.
11. The Dynamic Input (DYN) method of construction can be used equally well when constructing 3D model drawings as when constructing 2D drawings.
12. 3D surfaces can be formed from polylines or lines with Extrude.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/ 978-1-85617-868-6
1. Figure 14.42 shows a shaded view of the 3 D model for this exercise. Figure 14.43 is a threeview projection of the model. Working to the details given in Fig. 14.43, construct the 3D model.


Fig. 14.42 Exercise 1 - a three-view projection


Fig. 14.43 Exercise 1 - a shaded view
2. Construct a 3D model drawing of the separating link shown in the two-view projection (Fig. 14.44). With the Slice tool, slice the model into two parts and remove the
rear part. Place the front half in an isometric view using the ViewCube. Shade the resulting model.


Fig. 14.44 Exercise 2
3. Working to the dimensions given in the two orthographic projections (Fig. 14.46), and working on two layers of different colours, construct an assembled 3D model of the one part inside the other.
With the Slice tool, slice the resulting 3D model into two equal parts, and place in an isometric view. Shade the resulting model in Realistic mode as shown in Fig. 14.45.


Fig. 14.45 Exercise 3


Fig. 14.46 Exercise 3 - orthographic projections
4. Construct a solid of revolution of the jug shown in the orthographic projection (Fig. 14.47). Construct a handle from an extrusion of a circle along a semicircular path. Union the two parts.

Place the 3D model in a suitable isometric view and render.


Fig. 14.47 Exercise 4
5. In the Top view on a layer colour blue construct the four polylines Fig. 14.48. Call the Extrude tool and extrude the polylines to a height of \(\mathbf{8 0}\) and place in the isometric view. Then call Visual Styles/Conceptual shading (Fig. 14.49).


Fig. 14.48 Exercise 5 - outline to be extruded


Fig. 14.49 Exercise 5
5. In the Right view construct the lines and arc Fig. 14.50 on a layer colour green. Extrude the lines and arc to a height of 180, place in the isometric view and in the shade style Visual Styles/Realistic (Fig. 14.51).


Fig. 14.50 Exercise 6 - outline to be extruded


Fig. 14.51 Exercise 5

\section*{Chapter 15}

\section*{Rendering}

\section*{AIMS OF THIS CHAPTER}

The aims of this chapter are:
1. To construct a template for 3 D modelling to be used as the drawing window for further work in 3D in this book.
2. To introduce the use of the Render tools in producing photographic-like images of 3D solid models.
3. To show how to illuminate a 3D solid model to obtain good lighting effects when rendering.
4. To give examples of the rendering of 3D solid models.
5. To introduce the idea of adding materials to 3D solid models in order to obtain a realistic appearance to a rendering.
6. To demonstrate the use of the forms of shading available using Visual Styles shading.
7. To demonstrate methods of printing rendered 3D solid models.

\section*{Setting up a new 3D template}

In this chapter we will be constructing all 3D model drawings in the acadiso3D.dwt template.
1. Click the Workspace Switching button and click 3D Modeling from the menu which appears (Fig. 15.1).


Fig. 15.1 Click 3D Modeling in the Workspace Settings menu
2. The AutoCAD window (Fig. 15.2) appears.


Fig. 15.2 The 3D Modeling workspace
3. At the command line enter:

Command:enter perspective <1>:enter 0
Command:
4. Open the Options dialog with a right-click in the Command palette, followed by a click on Options... in the menu which appears.
5. Click the Colors button. The Drawing Window Colors dialog appears. Set Uniform Background colour to white (Fig. 15.3).


Fig. 15.3 In the Options dialog set all background colours to white

\section*{Note}

The reader may prefer to retain the original background colours from the Options dialog. The colour white for backgrounds is used in this book for the clarity of illustrations.
6. Set Units to a Precision of \(\mathbf{0}\), Snap to 5 and Grid to 10. Set Limits to 420,297. Zoom to All.
7. In the Options dialog click the Files tab and click Default Template File Name for QNEW (Fig. 15.4) followed by a double-click on the file name which appears. This brings up the Select Template dialog, from which the acadiso3d.dwt can be selected. Now when AutoCAD 2010 is opened from the Windows desktop, the acadiso3D.dwt template will open.
8. Set up five layers of different colours. In my template these have been named after the colours (Fig. 15.5).
9. Save the template to the name acadiso3D and then enter a suitable description in the Template Definition dialog.

\section*{Note}

Figure 15.2 shows the screen is in Parallel projection. Some operators may prefer the screen to be set to Perspective projection.


Fig. 15.4 Setting the default template setting in the Options dialog


Fig. 15.5 Set up five new layers

\section*{Palettes}

Click the Tool Palettes button in the View/Palettes panel (Fig. 15.6). The Tool Palettes - All Palettes palette appears docked at the right-hand edge of the AutoCAD window (Fig. 15.7). Drag the palette away from
its docked position. Right-click in the title bar of the palette and a right-click menu appears (Fig. 15.8). In Fig. 15.7 the Draw palette is showing.


Fig. 15.6 Click the Tool Palettes button in the View/ Palettes panel


Fig. 15.7 The Tool Palettes - All Palettes palette with its right-click menu

To choose the tool palette required for the work in hand, either click on the name of the required palette in the tabs at the right-hand side of All Palettes palette or, if the required name is not showing, select the palette name from the right-click menu appearing with a right-click in the bottom left-hand corner of the All Palettes palette (Fig. 15.8).

The All Palettes palette can be docked against the side of the AutoCAD window if needed.


Fig. 15.8 The right-click menu from the All Palettes palette

\section*{Applying materials to a model}

Materials can be applied to a 3D model directly from icons in a selected palette. Three examples follow - applying a masonry material, applying a wood material and applying a metal material.

\section*{Examples of applying materials}

In the three examples which follow lighting effects are obtained by turning Sun Status on by clicking the Sun Status icon in the Render/ Sun \& Location panel (Fig. 15.9). The Lighting - Viewport Lighting Mode dialog appears (Fig. 15.10). Click Turn off default lighting (recommended).


Fig. 15.9 The Sun Status icon in the Render/Sun \& Location panel


Fig. 15.10 The Lighting - Viewport Lighting Mode dialog
When the material has been applied, click Render Region from the subpanel of the Render/Render panel (Fig. 15.11) and after selecting a window surrounding the model, the model will render.


Fig. 15.11 The Render Region from the Render/Render panel and its sub-panel

\section*{First example - applying a masonry material (Fig. 15.12)}

Construct the necessary 3D model. In the All Palettes palette click the tab labelled Masonry - Materials Sample. Drag the icon representing the material to be applied on to the model. Then render the model. Fig. 15.12 shows the resulting rendering.


Fig. 15.12 First example - applying a masonry material

Second example - applying a metal material (Fig. 15.13)
Construct the necessary 3D model. From the All Palettes palette click the tab labelled Metals - Materials Sample. Drag the icon representing the material on to the model. Then render the model. The rendering is shown in Fig. 15.13.


Fig. 15.13 Second example - applying a metal material

\section*{Third example - applying a wood material (Fig. 15.14)}

Construct the necessary 3D model. In the All Palettes palette click the tab labelled Woods and Plastics - Materials Sample. Drag the icon representing the material on to the model. Then render the model. The rendering is shown in Fig. 15.14.


Fig. 15.14 Third example - applying a wood material

\section*{Modifying an applied material}

If the result of applying a material direct to a model from the selected materials palette is not satisfactory, modifications to the applied material can be made. In the case of the second example, enter materials at the command line and the Materials palette appears showing the Available

Materials in Drawing palette (Fig. 15.15). Features such as colour of the applied material, tiling, or different texture maps of the material (or materials) applied to a model can be amended as wished from this palette.


Fig. 15.15 The Materials palette showing Available Materials in Drawing

\section*{Fourth example - available materials in drawing}
(Fig. 15.16)
As an example Fig. 15.16 shows the nine materials applied to various parts of a 3D model of a hut in a set of fields surrounded by fences. The Available Materials in Drawing are shown, together with the Material Editor for the top left-hand material (outlined in yellow). A click on a material in the Available Materials in Drawing brings up details of that selected material.


Fig. 15.16 An example of materials applied to parts of a 3D model

\section*{The Render tools and dialogs}

The tool icons and menus in the Render/Render sub-panel are shown in Fig. 15.17.


Fig. 15.17 The tools and menus in the Render/Render panel

\section*{The Lights tools}

The different forms of lighting from light palettes are shown in Fig. 15.19. There are a large number of different types of lighting available when using AutoCAD 2010, among which those most frequently used are:

Default lighting. Depends on the setting of the set variable
LIGHTINGUNITS. Set to \(\mathbf{1}\) and one distant light illuminates the scene. Set to 2 and two distant lights illuminate the scene. Settings can also be made in the flyout from the Render/Lights panel (Fig. 15.18).
Point lights shed light in all directions from the position in which the light is placed (Fig. 15.18).
Distant lights send parallel rays of light from their position in the direction chosen by the operator (Fig. 15.18).
Spot lights illuminate as if from a spotlight. The light is in a direction set by the operator and is in the form of a cone, with a "hotspot" cone giving a brighter spot on the model being lit (Fig. 15.18).
Sun light which can be edited as to position (Fig. 15.18).
Sky background and illumination (Fig. 15.18).
A variety of lights of differing types in which lights of a selected wattage can be placed in a lighting scene. The set variable LIGHTINGUNITS must be set to \(\mathbf{1}\) or \(\mathbf{2}\) for these lights to function (Fig. 15.19).


Fig. 15.18 Light buttons in the Render/Lights and Render/Sun \& Location panels


Fig. 15.19 The lighting tool palettes
Placing lights to illuminate a 3D model
In this book examples of lighting methods shown in examples will only be concerned with the use of Point, Direct and Spot lights, together with Default lighting.

Any number of the three types of lights - Point, Distant and Spot can be positioned in 3D space as wished by the operator.

In general, good lighting effects can be obtained by placing a Point light high above the object(s) being illuminated, with a Distant light placed pointing towards the object at a distance from the front and above the general height of the object(s) and with a second Distant light pointing towards the object(s) from one side and not as high as the first Distant light. If desired Spot lights can be used either on their own or in conjunction with the other two forms of lighting.

\section*{Setting rendering background colour}

The default background colour for rendering in the acadiso3D template is black by default. In this book, all renderings are shown on a white background in the viewport in which the 3D model drawing was constructed. To set the background to white for renderings:
1. At the command line:

Command:enter view right-click

The View Manager dialog appears (Fig. 15.20). Click Model View in its Views list, followed by a click on the New... button.


Fig. 15.20 The View Manager dialog
2. The New View/Shot Properties dialog (Fig. 15.21) appears. Enter current (or similar) in the View name field. In the Background popup list click Solid. The Background dialog appears (Fig. 15.22).


Fig. 15.21 The New View/Shot Properties dialog
3. In the Background dialog click in the Color field. The Select Color dialog appears (Fig. 15.22).


Fig. 15.22 The Background and Select Color dialogs
4. In the Select Color dialog drag the slider as far upwards as possible to change the colour to white \((\mathbf{2 5 5}, \mathbf{2 5 5}, \mathbf{2 5 5})\). Then click the dialog's OK button. The Background dialog reappears showing white in the Color and Preview fields. Click the Background dialog's OK button.
5. The New View/Shot Properties dialog reappears showing current highlighted in the Views list. Click the dialog's OK button.
6. The View Manager dialog reappears. Click the Set Current button, followed by a click on the dialog's OK button (Fig. 15.23).


Fig. 15.23 The View Manager dialog reappears


Fig. 15.24 The Advanced Render Settings palette
7. Enter rpref at the command line. The Advanced Render Settings palette appears.
8. In the Render Context field click the arrow to the right of Window and in the pop-up menu which appears click Viewport as the rendering destination (Fig. 15.24).
9. Close the palette and save the screen with the new settings as the template 3dacadiso.dwt. This will ensure renderings are made in the workspace in which the 3D model was - on a white background.

\section*{First example - Rendering (Fig. 15.37)}
1. Construct a 3D model of the wing nut shown in the two-view projection Fig. 15.25.
2. Place the 3D model in the ViewCube/Top view (Fig. 15.26), Zoom to 1 and, with the Move tool, move the model to the upper part of the AutoCAD drawing area.
3. Click the Point Light tool icon in the Render/Lights panel (Fig. 15.27). The warning window Fig. 15.28 appears. Click Turn off Default Lighting in the window.
4. A New Point Light icon appears (depending upon the setting of the Light Glyph Setting in the Drafting area of the Options dialog) and the command line shows:

Command:_pointlight
Specify source location \(<0,0,0>:\) enter .xy rightclick of click at centre of model (need Z): enter 500 right-click


Fig. 15.25 First example - Rendering - two-view projection


Fig. 15.26 Place the model in the ViewCube/ Top view


Fig. 15.27 The Point Light icon in the Render/ Lights panel


Fig. 15.28 The Lighting - Viewport Lighting Mode warning window
Enter an option to change [Name/Intensity/Status/ shadoW/Attenuation/Color/eXit]
<eXit>:enter n (Name) right-click
Enter light name <Pointlight1>:right-click
Enter an option to change [Name/Intensity/ Status/shadoW/Attenuation/Color/eXit]
<eXit>:right-click
Command:
5. There are several methods by which Distant lights can be called: by selecting Default Distant Light from the Generic
Lights palette (Fig. 15.29), with a click the on the Distant icon in the Render/Lights panel, or by entering distantlight at the command line.

No matter which method is adopted the Lighting - Viewport Lighting Mode dialog (Fig. 15.30) appears. Click Turn off default lighting (recommended). The Lighting - Photometric Distant Lights dialog appears (Fig. 15.30). Click Allow distant lights in this dialog and the command line shows:

Command:_distantlight
Specify light direction \(F R O M<0,0,0>\) or
[Vector]:enter .xy right-click of click to the left and below the 3D model (need
Z) enter 400 right-click

Specify light direction \(T O<1,1,1>\) :enter
.xy right-click of click at centre of mode (need Z)
enter 70 right-click
Enter an option to change [Name/Intensity


Fig. 15.30 The Distant Lights dialogs
factor/Status/Photometry/shadoW/filterColor/eXit]
<eXit>:enter n (Name) right-click
Enter light name <Distantlight1>:right-click
Enter an option to change [Name/Intensity
factor/Status/Photometry/shadoW/filterColor/eXit]
<eXit>:right-click
Command:
6. Place another Distant Light (Distantlight2) in the same position TO and FROM the front and below the model at \(\mathbf{Z}\) of \(\mathbf{3 0 0}\).
7. When the model has been rendered, if a light requires to be changed in intensity, shadow, position or colour, click Lights in Model in the View/3D Palettes panel (Fig. 15.31) and the Lights in Model Palette appears (Fig. 15.32). Double-click a light name and the Properties

\section*{Note}

In this example the Intensity factor has been set at \(\mathbf{1}\) for lights. This is possible because the lights are close to the model. In larger-size models the Intensity factor may have to be set to a higher figure.


Fig. 15.31 Selecting Lights in Model Palette from the View/3D Palettes panel


Fig. 15.32 The Lights in Model and Properties palettes
palette for the light appears in which modifications can be made (Fig. 15.32). Amendments can be made as thought necessary.

\section*{Adding a material to the model}
1. In the Metals - Materials Library palette select Metals, Structural Metal Framing, Steel and apply it to the 3D model (Fig. 15.33).
2. Click the Materials button in the View/3D Palettes panel. The Materials palette appears showing an icon of the applied material (Fig. 15.34). In the palettes click the Diffuse color button and from the Select Color dialog which appears select a suitable colour for the model.


Fig. 15.33 Metals, Structural Metal Framing, Steel applied to the model


Fig. 15.35 Select Realistic in the Type dropdown menu
3. Click Apply Material to Objects icon (Fig. 15.34).
4. Click any part of the 3D model to apply the material to the model.
5. Right-click in the Type field of the Material Editor section of the palette and select Realistic in the right-click menu (Fig. 15.35).
6. Select Presentation from the Render Presets menu in the sub Render/ Render panel (Fig. 15.36).
7. Render the 3D model again and if now satisfied save to a suitable file name.


Figure 15.37 shows four renderings in the four Type settings.

\section*{Note}

The limited description of rendering given in these pages does not show the full value of different types of lights, materials and rendering methods. The reader is advised to experiment with the facilities available for rendering.

\section*{Second example - Rendering a 3D modell (Fig. 15.39)}
1. Construct 3D models of the two parts of the stand and support given in the projections in Fig. 15.38 with the two parts assembled together.
2. Place the scene in the ViewCube/Top view, Zoom to \(\mathbf{1}\) and add lighting.
3. Add different materials to the parts of the assembly and render the result.

Figure 15.39 shows the resulting rendering.


Fig. 15.38 Second example - Rendering - orthographic projection


Fig. 15.39 Second example - Rendering

\section*{Third example - Rendering (Fig. 15.40)}

Figure 15.40 is an exploded, rendered 3D model of a pumping device from a machine and Fig 15.41 is a third angle orthographic projection of the device.


Fig. 15.40 Third example - Rendering

\section*{Free Orbit}

\section*{Example - Free Orbit (Fig. 15.43)}

With the second example on screen select Conceptual shading from the Visual Styles pop-up list in the Home/View panel (Fig. 15.42).

Click the Free Orbit button in the View/Navigate panel (Fig. 15.43). An orbit cursor appears on screen. Moving the cursor under mouse control



Fig. 15.41 Third example - Rendering exploded orthographic views


Fig. 15.42 The Visual Styles pop-up from the Home/View panel
allows the model on screen to be placed in any desired viewing position. Figure 15.43 shows an example of a Free Orbit.


Fig. 15.43 Example - Free Orbit
Right-click anywhere on screen and a right-click menu appears (Fig. 15.43) from which choices may be made.

\section*{Producing hardcopy}

Printing or plotting a drawing on screen from AutoCAD 2010 can be carried out from either Model Space or from Paper Space. In versions of AutoCAD before AutoCAD 2004, it was necessary to print or plot from Pspace.

\section*{First example - printing (Fig. 15.45)}

\section*{Note}

This example is of a drawing which has been acted upon by the Visual Styles/Realistic shading mode.
1. With a drawing to be printed or plotted on screen click the Plot tool icon in the Quick Access toolbar (Fig. 15.44).


Fig. 15.44 The Plot icon in the Quick Access toolbar
2. The Plot dialog appears. Set the Printer/Plotter to a printer or plotter currently attached to the computer and the Paper Size to a paper size to which the printer/plotter is set.
3. Click the Preview button of the dialog and if the preview is OK (Fig. 15.45), right-click and in the right-click menu which appears, click Plot. The drawing plots, producing the necessary "hardcopy".


Fig. 15.45 First example - Print Preview - printing a single copy

\section*{Second example - multiple-view copy (Fig. 15.46)}

The 3D model to be printed is a Realistic view of a 3D model. To print a multiple-view copy:
1. Place the drawing in a Four: Equal viewport setting.
2. Make a new layer vports of colour cyan and make it the current layer.
3. Click the Layout button in the status bar. At the command line:

Command:enter mv (MVIEW)right-click MVIEW
Specify corner of viewport or [ON/OFF/Fit/ Shadeplot/Lock/Object/Polygonal/Restore/ LAyer/2/3/4] <Fit>:enter \(r\) Restore)right-click Enter viewport configuration name or [?]
<*Active>:right-click
Specify first corner or [Fit] <Fit>:right-click Command:


Fig. 15.46 Second example - multiple view copy

The drawing appears in Paper Space. The views of the 3D model each appear within a cyan outline in each viewport.
4. Turn layer vports off. The cyan outlines of the viewports disappear.
5. Click the Plot tool icon in the Output/Plot toolbar. Make sure the correct Printer/Plotter and Paper Size settings are selected and click the Preview button of the dialog.
6. If the preview is satisfactory (Fig. 15.46), right-click and from the right-click menu click Plot. The drawing plots to produce the required four-viewport hardcopy.

\section*{Other forms of hardcopy}

When working in AutoCAD 2010, several different forms of hardcopy in Home/View visual styles are possible. As an example a single-view plot review of the same 3D model is shown in the Hidden visual shading form (Fig. 15.47).


\section*{Saving and opening 3D model drawings}

3D model drawings are saved and/or opened in the same way as are 2D drawings. To save a drawing click Save As... in the File drop-down menu and save the drawing in the Save Drawing As dialog by entering a drawing file name in the File Name field of the dialog before clicking the Save button. To open a drawing which has been saved click Open... in the File drop-down menu, and in the Select File dialog which appears select a file name from the file list.

There are differences between saving a 2D and a 3D drawing, in that when a 3D model drawing is shaded by using a visual style from the Home/ View panel, the shading is saved with the drawing.

\section*{REVISION NOTES}
1. 3 D models can be constructed in any of the workspaces - 2 D Design \& Annotation, Classic AutoCAD or 3D Modeling. In Part 2 of this book 3D models are constructed in the 3D Modeling workspace.
2. 3D model drawings can be constructed in either a Parallel projection or in a Perspective projection layout.
3. Material and light palettes can be selected from the Tool Palettes - All Palettes palette.
4. Materials can be modified from the Materials palette.
5. In this book, lighting of a scene with 3D models is by placing two distant lights in front of and above the models, with one positioned to the left and the other to the right and a point light above the centre of the scene.
6. There are many other methods of lighting a scene, in particular using default lighting or sun lighting.
7. Several Render preset methods of rendering are available, from Draft to Presentation.
8. The use of the Orbit tools allows a 3D model to be presented in any position.
9. Plotting or printing of either Model or Layout windows is possible.
10. Hardcopy can be from a single viewport or from multiple viewports. When printing or plotting 3D model drawings Visual Style layouts print as they appear on screen.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/978-1-85617-868-6
1. A rendering of an assembled lathe tool-holder is shown in Fig. 15.48. The rendering includes different materials for each part of the assembly.

Working to the dimensions given in the parts orthographic drawing (Fig. 15.49), construct a 3D model drawing of the assembled lathe tool-holder on several layers of different colours, add lighting and materials and render the model in an isometric view.

Shade with 3D Visual Styles/Hidden and print or plot a ViewCube/Isometric view of the model drawing.


Fig. 15.48 Exercise 1


Fig. 15.49 Exercise 1 - parts drawings
2. Figure 15.50 is a rendering of a drip tray. Working to the sizes given in Fig. 15.51, construct a 3D model drawing of the tray. Add lighting and a suitable material, place the model in an isometric view and render.


Fig. 15.50 Exercise 2


Fig. 15.51 Exercise 2 - two-view projection
3. A three-view drawing of a hanging spindle bearing in third angle orthographic projection is shown in Fig. 15.52. Working to the dimensions in the drawing construct a 3D model drawing of the bearing. Add lighting and a material and render the model.


Fig. 15.52 Exercise 3

\section*{Chapter 16}

\section*{Building drawing}

\section*{AIMS OF THIS CHAPTER}

The aims of this chapter are:
1. To show that AutoCAD 2010 is a suitable computer-aided design software package for the construction of building drawings.
2. To show that AutoCAD 2010 is a suitable CAD programme for the construction of 3D models of buildings.

\section*{Building drawings}

There are a number of different types of drawings related to the construction of any form of building. In this chapter a fairly typical example of a set of building drawings is shown. These are seven drawings related to the construction of an extension to an existing two-storey house (44 Ridgeway Road). These show:
1. A site plan of the original two-storey house, drawn to a scale of \(\mathbf{1 : 2 0 0}\) (Fig. 16.1).


Fig. 16.1 A site plan
2. A site layout plan of the original house, drawn to a scale of \(\mathbf{1 : 1 0 0}\) (Fig. 16.2).
3. Floor layouts of the original house, drawn to a scale of \(\mathbf{1 : 5 0}\) (Fig. 16.3).
4. Views of all four sides of the original house drawn to a scale of \(\mathbf{1 : 5 0}\) (Fig. 16.4).
5. Floor layouts including the proposed extension, drawn to a scale of 1:50 (Fig. 16.5).
6. Views of all four sides of the house including the proposed extension, drawn to a scale of \(\mathbf{1 : 5 0}\) (Fig. 16.6).
7. A sectional view through the proposed extension, drawn to a scale of 1:50 (Fig. 16.7).


Fig. 16.2 A site layout plan


Fig. 16.3 Floor layouts drawing of the original house


Fig. 16.4 Views of the original house


Fig. 16.5 Floor layouts drawing of the proposed extension

\section*{Note}
1. Other types of drawings will be constructed such as drawings showing the details of parts such as doors, windows, floor structures etc. These are often shown in sectional views.
2. Although the seven drawings related to the proposed extension of the house at 44 Ridgeway Road are shown here as having been constructed on either A3 or A4 layouts, it is common practice to include several types of building drawings on larger sheets such as A1 sheets of a size 820 mm by 594 mm .


Fig. 16.6 Views including the proposed extension



Fig. 16.8 A small library of building symbols

\section*{3D models of buildings}

Details of shapes and dimensions for the first two examples are taken from the drawings of the building and its extension at 44 Ridgeway Road given in the Figures 16.2 to 16.6 on pages 325 to 327 .

\section*{First example - 44 Ridgeway Road - original building}

Details of this first example are taken from Figures 16.2 to 16.4 on pages 325 and 326.

The following steps describe the construction of a 3D model of 44 Ridgeway Road prior to the extension being added.
1. In the Layer Properties Manager palette - Doors (colour red), Roof (colour green), Walls (colour blue), Windows (colour magenta) (Fig. 16.9).
2. Set the screen to the ViewCube/Front view (Fig. 16.10).


Fig. 16.10 Set screen to the ViewCube/Front view


Fig. 16.9 First example - the layers on which the model is to be constructed
3. Set the layer Walls current and, working to a scale of \(\mathbf{1 : 5 0}\), construct outlines of the walls. Construct outlines of the bay, windows and doors inside the wall outlines.
4. Extrude the wall, bay, window and door outlines to a height of \(\mathbf{1}\).
5. Subtract the bay, window and door outlines from the wall outlines. The result is shown in Fig. 16.11.


Fig. 16.11 First example - the walls
6. Make the layer Windows current and construct outlines of three of the windows which are of different sizes. Extrude the copings and sills to a height of \(\mathbf{1 . 5}\) and the other parts to a height of \(\mathbf{1}\). Form a union of the main outline, the coping and the sill. The window pane extrusions will have to be subtracted from the union. Fig. 16.12 shows the 3D models of the three windows in a ViewCube/Isometric view.


Fig. 16.12 First example - extrusions of the three sizes of windows
7. Move and copy the windows to their correct positions in the walls.
8. Make the layer Doors current and construct outlines of the doors and extrude to a height of \(\mathbf{1}\).


Fig. 16.13 First example - Realistic view of a 3D model of the chimney


Fig. 16.15 Set screen to ViewCube/Top view
9. Make layer Chimney current and construct a 3D model of the chimney (Fig. 16.13).
10. Make the layer Roofs current and construct outlines of the roofs (main building and garage). See Fig. 16.14.


Fig. 16.14 First example - Realistic view of the roofs
11. On the layer Bay construct the bay and its windows.

\section*{Assembling the walls}
1. Place the screen in the ViewCube/Top view (Fig. 16.15).
2. Make the layer Walls current and turn off all other layers other than Windows.
3. Placing a window around each wall in turn move and/or rotate and move the walls until they are in their correct position relative to each other.
4. Place in the ViewCube/Isometric view and using the Move tool, move the walls into their correct positions relative to each other. Fig 16.16 shows the walls in position in a ViewCube/Top view.


Fig. 16.16 First example - the four walls in their correct positions relative to each other in a ViewCube/Top view

Fig. 16.18 Set screen to a ViewCube/ Isometric view
5. Move the roof into position relative to the walls and move the chimney into position on the roof. Fig. 16.17 shows the resulting 3D model in a ViewCube/Isometric view (Fig. 16.18).


Fig. 16.17 First example - a Realistic view of the assembled walls, windows, bay, roof and chimney

\section*{The garage}

On layer Walls construct the walls and on layer Windows construct the windows. Fig. 16.19 is a Realistic visual style view of the 3D model as constructed so far.


Fig. 16.19 First example - Realistic view of the original house and garage

\section*{Second example - extension to 44 Ridgeway Road}

Working to a scale of \(\mathbf{1 : 5 0}\) and taking dimensions from Figures 16.5 and 16.6 (page 326 and in a manner similar to the method of constructing the 3D model of the original building, add the extension to the original building. Fig. 16.20 shows a Realistic visual style view of the resulting 3D model. In this 3D model floors have been added - a ground and a firststorey floor constructed on a new layer Floors of colour yellow. Note the changes in the bay and front door.


Fig. 16.20 Second example - a Realistic view of the building with its extension

\section*{Third example - small building in fields}

Working to a scale of \(\mathbf{1 : 5 0}\) from the dimensions given in Fig. 16.21, construct a 3D model of the hut following the steps given below.

The walls are painted concrete and the roof is corrugated iron.
In the Layer Properties Manager dialog make the new levels as follows:
Walls - colour blue
Road - colour red
Roof - colour red
Windows - colour magenta
Fence - colour 8
Field - colour green

Following the methods used in the construction of the house in the first example, construct the walls, roof, windows and door of the small building in one of the fields. Fig. 16.22 shows a Realistic visual style view of a 3D model of the hut.


Fig. 16.21 Third example - front and end views of the hut


Fig. 16.22 Third example - a Realistic view of a 3D model of the hut

\section*{Constructing the fence, fields and road}
1. Place the screen in a Four: Equal viewports setting.
2. Make the Garden layer current and in the Top viewport, construct an outline of the boundaries to the fields and to the building. Extrude the outline to a height of \(\mathbf{0 . 5}\).
3. Make the Road layer current and in the Top viewport, construct an outline of the road and extrude the outline to a height of \(\mathbf{0 . 5}\).
4. In the Front view, construct a single plank and a post of a fence and copy them a sufficient number of times to surround the four fields leaving gaps for the gates. With the Union tool form a union of all the posts and planks. Fig. 16.23 shows a part of the resulting fence in a Realistic visual style view in the Isometric viewport. With the Union tool form a union of all the planks and posts in the entire fence.
5. While still in the layer Fence, construct gates to the fields.
6. Make the Road layer current and construct an outline of the road.

Extrude to a height of \(\mathbf{0 . 5}\).

\section*{Note}

When constructing each of these features it is advisable to turn off those layers on which other features have been constructed.


Fig. 16.23 Third example - part of the fence
Fig. 16.24 shows a Conceptual view of the hut in the fields with the road, fence and gates.


Fig. 16.24 Third example - the completed 3D model

\section*{Completing the second example}

Working in a manner similar to the method used when constructing the roads, garden and fences for the third example, add the paths, garden area
and fences and gates to the building 44 Ridgeway Road with its extension. Fig. 16.24 is a Conceptual visual style view of the resulting 3D model.

\section*{Material attachments and rendering-Second example}

The following materials were attached to the various parts of the 3D model (Fig. 16.25). To attach the materials, all layers except the layer on which the objects to which the attachment of a particular material is being made are turned off, allowing the material in question to be attached only to the elements to which each material is to be attached.


Fig. 16.25 Second example - the completed 3D model
Default: colour 7.
Doors: Wood - Hickory
Fences: Wood - Spruce
Floors: Wood - Hickory
Garden: Green
Gates: Wood - White
Roofs: Brick - Herringbone
Windows: Wood - White
The 3D model was then rendered with Output Size set to \(\mathbf{1 0 2 4} \times 768\) and Render Preset set to Presentation, with Sun Status turned on. The resulting rendering is shown in Fig. 16.26.

\section*{Material attachments and rendering-Third example}

Fig. 16.27 shows the third example after attaching materials and rendering.


Fig. 16.26 Second example - a rendering after attaching materials


Fig. 16.27 Third example - 3D model after attaching materials and rendering

\section*{REVISION NOTES}
1. There are a number of different types of building drawings - site plans, site layout plans, floor layouts, views, sectional views, detail drawings. AutoCAD 2010 is a suitable CAD programme to use when constructing building drawings.
2. AutoCAD 2010 is a suitable CAD programme for the construction of 3D models of buildings.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/ 978-1-85617-868-6
1. Fig. 16.28 is a site plan drawn to a scale of \(1: 200\) showing a bungalow to be built in the garden of an existing bungalow. Construct the library of symbols shown in Fig. 16.8 on page 328 and by inserting the symbols from the DesignCenter construct a scale 1:50 drawing of the floor layout plan of the proposed bungalow.


Fig. 16.28 Exercise 1
2. Fig. 1629 is a site plan of a two-storey house in a building plot. Design and construct to a scale \(1: 50\) a suggested pair of floor layouts for the two floors of the proposed house.


Fig. 16.29 Exercise 2
3. Fig. 16.30 shows a scale \(1: 100\) site plan for the proposed bungalow 4 Caretaker Road. Construct the floor layout for the proposed house shown in the drawing Fig. 1628.


Fig. 16.30 Exercise 3 - site plan
4. Fig. 16.31 shows a building plan of the house in the site plan (Fig. 16.30). Construct a 3D model view of the house making an assumption as to the roofing and the heights connected with your model.


Fig. 16.31 Exercise 4 - a building plan
5. Fig. 1632 is a three-view, dimensioned orthographic projection of a house. Fig. 16.33 is a rendering of a 3D model of the house. Construct the 3D model to a scale of 1:50, making estimates of dimensions not given in Fig. 16.32 and render using suitable materials.


Fig. 16.32 Exercise 5 - orthographic views


Fig. 16.33 Exercise 5 - the rendered model
6. Fig. 16.34 is a two-view orthographic projection of a small garage. Fig. 16.35 shows a rendering of a 3D model of the garage. Construct the 3D model of the garage working to a suitable scale.


Fig. 16.34 Exercise 5 - orthographic views


Fig. 16.35 Exercise 5

\section*{Chapter 17}

\section*{Three-dimensional}
space

\section*{AIMS OF THIS CHAPTER}

The aim of this chapter is to show in examples the methods of manipulating 3D models in 3D space using the UCS tools from the View/Coordinates panel or from the command line.

\section*{3D space}

So far in this book, when constructing 3D model drawings, they have been constructed on the AutoCAD 2010 coordinate system which is based upon three planes:

The XY Plane - the screen of the computer.
The XZ Plane at right angles to the XY Plane and as if coming towards the operator of the computer.
A third plane ( \(\mathbf{Y Z}\) ) is lying at right angles to both the other two planes (Fig. 17.1).


Fig. 17.1 The 3D space planes

In earlier chapters the ViewCube was described, which enables 3D objects which have been constructed on these three planes to be viewed from different viewing positions. Other methods of viewing a model in 3D space and placing the model in other viewing positions using the Vpoint Presets dialog and the Orbit tool have also been described.

\section*{The User Coordinate System (UCS)}

\section*{Note}

The XY plane is the basic UCS plane, which in terms of the UCS is known as the *WORLD* plane.

The UCS allows the operator to place the AutoCAD coordinate system in any position in 3D space using a variety of UCS tools (commands).


Fig. 17.2 The View/ Coordinates panel

Features of the UCS can be called either by entering ucs at the command line, by selection of tools from the View/Coordinates panel (Fig. 17.2) or from the two UCS toolbars - UCS and UCS II (Fig. 17.3) called to screen from the Tools/Toolbars drop-down menu.


Fig. 17.3 The tools in the two UCS toolbars

If ucs is entered at the command line, it shows:
Command:enter ucs right-click
Current ucs name: *WORLD*
Specify origin of UCS or [Face/NAmed/OBject/
Previous/View/World/X/Y/Z/ZAxis] <World>:
And from these prompts selections can be made.

\section*{The variable UCSFOLLOW}

UCS planes can be set using any of the methods given above (Figs 17.2 and 17.3) or by entering ucs at the command line. No matter which method is used, the variable UCSFOLLOW must first be set on as follows:
Command:enter ucsfollow right-click
Enter new value for UCSFOLLOW <0>:enter
1 right-click
Command:

The UCS icon

The UCS icon indicates the directions in which the three coordinate axes \(\mathbf{X}, \mathbf{Y}\) and \(\mathbf{Z}\) lie in the AutoCAD drawing. When working in 2D, only the
\(\mathbf{X}\) and \(\mathbf{Y}\) axes are showing, but when the drawing area is in a 3D view all three coordinate arrows are showing, except when the model is in the \(\mathbf{X Y}\) plane. The icon can be turned off as follows:
```

Command:enter ucsicon right-click
Enter an option [ON/OFF/All/Noorigin/ORigin/
Properties] <ON>:

```

To turn the icon off, enter off in response to the prompt line and the icon disappears from the screen.

The appearance of the icon can be changed by entering \(\mathbf{p}\) (Properties) in response to the prompt line. The UCS Icon dialog appears in which changes can be made to the shape, line width and colour of the icon if wished.

\section*{Types of UCS icon}

The shape of the icon can be varied partly when changes are made in the UCS Icon dialog but also according to whether the AutoCAD drawing area is in 2D, 3D or Paper Space (Fig. 17.4).

 Isometric


3D icon in acadiso3D


PSpace icon

Fig. 17.4 Types of UCS icon

\section*{Examples of changing planes using the UCS}

First example - changing UCS planes (Fig. 17.6)
1. Set UCSFOLLOW to \(\mathbf{1}(\mathrm{ON})\).
2. Place the screen in ViewCube/Front and Zoom to \(\mathbf{1}\).
3. Construct the pline outline Fig. 17.5 and extrude to \(\mathbf{1 2 0}\) high.
4. Place in ViewCube/Isometric view and Zoom to \(\mathbf{1}\).
5. With the Fillet tool, fillet corners to a radius of \(\mathbf{2 0}\).


Fig. 17.5 First example - changing UCS planes - pline for extrusion
6. At the command line:
```

Command:enter ucs right-click
Current ucs name: *WORLD*
Specify origin of UCS or [Face/NAmed/OBject/
Previous/View/World/X/Y/Z/ZAxis] <World>:
enter f (Face) right-click
Select face of solid object:pick the sloping
face - its outline highlights
Enter an option [Next/Xflip/Yflip] <accept>:
right-click
Regenerating model.
Command:

```

And the 3D model changes its plane so that the sloping face is now on


Fig. 17.6 First example - changing UCS planes the new UCS plane. Zoom to \(\mathbf{1}\).
7. On this new UCS, construct four cylinders of radius 7.5 and height -15 (note the minus) and subtract them from the face.
8. Enter ucs at the command line again and right-click to place the model in the *WORLD* UCS.
9. Place four cylinders of the same radius and height into position in the base of the model and subtract them from the model.
10. Place the 3D model in a ViewCube/Isometric view and set in the Home/View/Conceptual visual style (Fig. 17.6).

\section*{Second example - UCS (Fig. 17.9)}

The 3D model for this example is a steam venting valve - a two-view third angle projection of the valve is shown in Fig. 17.7.
1. Make sure that UCSFOLLOW is set to \(\mathbf{1}\).
2. Place in the UCS *WORLD* view. Construct the \(\mathbf{1 2 0}\) square plate at the base of the central portion of the valve. Construct five cylinders for the holes in the plate. Subtract the five cylinders from the base plate.


Fig. 17.7 Second example UCS - the orthographic projection of a steam venting valve
3. Construct the central part of the valve - a filleted \(\mathbf{8 0}\) square extrusion with a central hole.
4. At the command line:
```

Command:enter ucs right-click
Current ucs name: WORLD*
Specify origin of UCS or [Face/NAmed/OBject/
Previous/View/World/X/Y/Z/ZAxis] <World>:
enter x right-click
Specify rotation angle about X axis <90>:
right-click
Command:

```
and the model assumes a Front view.
5. With the Move tool, move the central portion vertically up by \(\mathbf{1 0}\).
6. With the Copy tool, copy the base up to the top of the central portion.
7. With the Union tool form a single 3D model of the three parts.
8. Make the layer Construction current.
9. Place the model in the UCS *WORLD* view. Construct the separate top part of the valve - a plate forming a union with a hexagonal plate and with holes matching those of the other parts.
10. Place the drawing in the UCS \(\mathbf{X}\) view. Move the parts of the top into their correct positions relative to each other. With Union and Subtract complete the part. This will be made easier if the layer \(\mathbf{0}\) is turned off.


Fig. 17.8 Second example UCS - step 11 + rendering


Fig. 17.9 Second example UCS - steps 12 and \(13+\) rendering


Fig. 17.10 Second example UCS - pline for the bolt


Fig. 17.11 Second example UCS
11. Turn layer \(\mathbf{0}\) back on and move the top into its correct position relative to the main part of the valve. Then with the Mirror tool, mirror the top to produce the bottom of the assembly (Fig. 17.8).
12. While in the UCS X view construct the three parts of a 3D model of the extrusion to the main body.
13. In the UCS *WORLD* view, move the parts into their correct position relative to each other. Union the two filleted rectangular extrusions and the main body. Subtract the cylinder from the whole (Fig. 17.9).
14. In the UCS \(\mathbf{X}\) view, construct one of the bolts as shown in Fig. 17.10, forming a solid of revolution from a pline. Then construct a head to the bolt and with Union add it to the screw.
15. With the Copy tool, copy the bolt 7 times to give 8 bolts. With Move, and working in the UCS *WORLD* and \(\mathbf{X}\) views, move the bolts into their correct positions relative to the 3D model.
16. Add suitable lighting and attach materials to all parts of the assembly and render the model.
17. Place the model in the ViewCube/Isometric view.
18. Save the model to a suitable file name.
19. Finally move all the parts away from each other to form an exploded view of the assembly (Fig. 17.11).

Third example - UCS (Fig. 17.15)
1. Set UCSFOLLOW to \(\mathbf{1}\).
2. Place the drawing area in the UCS \(\mathbf{X}\) view.
3. Construct the outline Fig 17.12 and extrude to a height of \(\mathbf{1 2 0}\).
4. Click the \(\mathbf{3}\) Point tool icon in the View/Coordinates panel (Fig. 17.13):

Current ucs name: *WORLD*
Specify origin of UCS or [Face/NAmed/OBject/
Previous/View/World/X/Y/Z/ZAxis] <World>: _3
Specify new origin point \(<0,0,0>: p i c k\) point (Fig. 17.14)
Specify point on positive portion of X-axis:pick point (Fig. 17.14)
Specify point on positive-Y portion of the UCS XY plane <-142,200,0>:enter .xy right-click
of pick new origin point (Fig. 17.14) (need Z):
enter 1 right-click
Regenerating model
Command :

CHAPTER 17


Fig. 17.12 Third example UCS - outline for 3D model

Fig. 17.14 shows the UCS points and the model regenerates in this new 3-point plane.


Fig. 17.13 The UCS 3 Point icon in the View/Coordinates panel


Fig. 17.14 Third example UCS - the three UCS points
5. On the face of the model construct a rectangle \(\mathbf{8 0} \times \mathbf{5 0}\) central to the face of the front of the model, fillet its corners to a radius of \(\mathbf{1 0}\) and extrude to a height of \(\mathbf{1 0}\).
6. Place the model in the ViewCube/Isometric view and fillet the back edges of the second extrusion to a radius of \(\mathbf{1 0}\).
7. Subtract the second extrusion from the first.
8. Add lights, and a suitable material and render the model (Fig. 17.15).

\section*{Fourth example - UCS (Fig. 17.17)}
1. With the last example still on screen, place the model in the UCS *WORLD* view.
2. Call the Rotate tool from the Home/Modify panel and rotate the model through 225 degrees.
3. Click the \(\mathbf{X}\) tool icon in the View/Coordinates panel (Fig. 17.16):


Fig. 17.16 The UCS X tool in the View/Coordinates panel

Command: _ucs
Current ucs name: *WORLD*
Specify origin of UCS or [Face/NAmed/OBject/


Fig. 17.17 Fourth example
    Previous/View/World/X/Y/Z/ZAxis] <World>: _x
    Specify rotation angle about X axis
    <90>: right-click
Regenerating model.
Command:
4. Render the model in its new UCS plane (Fig. 17.17).

\section*{Saving UCS views}

If a number of different UCS planes are used in connection with the construction of a 3D model, each view obtained can be saved to a different name and recalled when required. To save a UCS plane view in which a 3D model drawing is being constructed enter ucs at the command line:
Current ucs name: *NO NAME*
Specify origin of UCS or [Face/NAmed/OBject/
Previous/View/World/X/Y/Z/ZAxis] <World>:
enter s right-click
Enter name to save current UCS or [?]:enter New
View right-click
Regenerating model
Command:
Click the UCS, UCS Setting arrow in the View/Coordinates panel and the UCS dialog appears. Click the Named UCSs tab of the dialog and the names of views saved in the drawing appear (Fig. 17.18).


Fig. 17.18 The UCS dialog

\section*{Constructing 2D objects in 3D space}

In previous chapters, there have been examples of 2D objects constructed with the Polyline, Line, Circle and other 2D tools to form the outlines for extrusions and solids of revolution. These outlines have been drawn on planes in the ViewCube settings.

First example - 2D outlines in 3D space (Fig. 17.21)
1. Construct a 3point UCS to the following points:

Origin point: 80,90
X-axis point: 290,150
Positive-Y point: .xy of 80,90
(need Z):enter 1
2. On this 3point UCS construct a 2D drawing of the plate to the dimensions given in Fig. 17.19, using the Polyline, Ellipse and Circle tools.
3. Save the UCS plane in the UCS dialog to the name 3point.
4. Place the drawing area in the ViewCube/Isometric view (Fig. 17.20).
5. Make the layer red current
6. With the Region tool form regions of the 6 parts of the drawing and, with the Subtract tool, subtract the circles and ellipse from the main outline.
7. Place in the Home/View/Realistic visual style. Extrude the region to a height of \(\mathbf{1 0}\) (Fig. 17.21).


Fig. 17.20 First example - 2D outlines in 3D space - the outline in the Isometric view


Fig. 17.19 First example - 2D outlines in 3D space


Fig. 17.21 First example - 2D outlines in 3D space

\section*{Second example - 2D outlines in 3D space (Fig. 17.25)}
1. Place the drawing area in the ViewCube/Front view, Zoom to \(\mathbf{1}\) and construct the outline shown in Fig. 17.22.
2. Extrude the outline to \(\mathbf{1 5 0}\) high.
3. Place in the ViewCube/Isometric view and Zoom to \(\mathbf{1}\).
4. Click the Face tool icon in the View/Coordinates panel (Fig. 17.23) and place the 3D model in the UCS plane shown in Fig. 17.24, selecting the sloping face of the extrusion for the plane and again Zoom to 1.
5. With the Circle tool draw five circles as shown in Fig. 17.24.
6. Form a region from the five circles and with Union form a union of the regions.
7. Extrude the region to a height of \(\mathbf{- 6 0}\) (note the minus) - higher than the width of the sloping part of the 3D model.
8. Place the model in the ViewCube/Isometric view and subtract the extruded region from the model.
9. With the Fillet tool, fillet the upper corners of the slope of the main extrusion to a radius of \(\mathbf{3 0}\).


Fig. 17.22 Second example - 2D outlines in 3D space - outline to be extruded


Fig. 17.23 The Face icon from the View/Coordinates panel
10. Place the model into another UCS Face plane and construct a filleted pline of sides \(\mathbf{8 0}\) and \(\mathbf{5 0}\) and filleted to a radius of 20. Extrude to a height of \(\mathbf{- 6 0}\) and subtract the extrusion from the 3D model.
11. Place in the ViewCube/Isometric view, add lighting and a material.

The result is shown in Fig. 17.25.


Fig. 17.25 Second example - 2D outlines in 3D space


Fig. 17.24 Second example - 2D outlines in 3D space - the circles in the new UCS face

\section*{The Surfaces tools}

The construction of 3D surfaces from lines, arc and plines has been dealt with - see pages 243 to 244 and 287 to 289. In this chapter examples of 3D surfaces constructed with the tools Edgesurf, Rulesurf and Tabsurf will be described. The tools can be called from the Mesh Modeling/Primitives panel. Fig. 17.26 shows the Tabulated Surface tool icon in the panel. The two icons to the right of that shown are the Ruled Surface and the Edge Surface tools. In this chapter these three surface tools will be called by entering their tool names at the command line.


Fig. 17.26 The Tabulated Surface tool icon in the Mesh Modeling/Primitives panel

\section*{Surface meshes}

Surface meshes are controlled by the set variables Surftab1 and Surftab2.
These variables are set as follows:
At the command line:
Command:enter surftabl right-click
Enter new value for SURFTAB1 <6>:enter 24
right-click
Command:

\section*{The Edgesurf tool (Fig. 17.29)}
1. Make a new layer colour magenta. Make that layer current.
2. Place the drawing area in the View Cube/Right view. Zoom to All.
3. Construct the polyline to the sizes and shape as shown in Fig. 17.27.
4. Place the drawing area in the View Cube/Top view. Zoom to All.
5. Copy the pline to the right by \(\mathbf{2 5 0}\).
6. Place the drawing in the ViewCube/Isometric view. Zoom to All.
7. With the Line tool, draw lines between the ends of the two plines using the endpoint osnap (Fig. 17.28). Note that if polylines are drawn they will not be accurate at this stage.
8. Set SURFTAB1 to 32 and SURFTAB2 to 64.
9. At the command line:


Fig. 17.27 Example - Edgesurf - pline outline


Fig. 17.28 Example Edgesurf adding lines joining the plines

Command:enter edgesurf right-click
Current wire frame density: SURFTAB1=32 SURFTAB2 \(=64\)

Select object 1 for surface edge:pick one of the lines (or plines)
Select object 2 for surface edge:pick the next adjacent line (or pline)
Select object 3 for surface edge:pick the next adjacent line (or pline)
Select object 4 for surface edge:pick the last line (or pline)
Command:
The result is shown in Fig. 17.29.


Fig. 17.29 Example - Edgesurf


Fig. 17.30 Rulesurf the outline

\section*{The Rulesurf tool (Fig. 17.29)}
1. Make a new layer colour blue and make the layer current.
2. In the ViewCube/Front view construct the pline as shown in Fig. 17.30.
3. In the 3D Navigate/Top, Zoom to \(\mathbf{1}\) and copy the pline to a vertical distance of \(\mathbf{1 2 0}\).
4. Place in the 3D Navigate/Southwest Isometric view and Zoom to \(\mathbf{1}\).
5. Set SURFTAB1 to 32.
6. At the command line:

Command:enter rulesurf right-click
Current wire frame density: SURFTAB1=32


Select first defining curve:pick one of the plines Select second defining curve:pick the other pline Command:

The result is given in Fig. 17.31

Fig. 17.31 Example Ruelsurf

\section*{The Tabsurf tool (Fig. 17.32)}
1. Make a new layer of colour blue and make the layer current.
2. Set SURFTAB1 to 2.
3. In the ViewCube/Top view construct a hexagon of edge length \(\mathbf{3 5}\).
4. In the ViewCube/Front view and in the centre of the hexagon construct a pline of height \(\mathbf{1 0 0}\).
5. Place the drawing in the ViewCube/Isometric view.
6. At the command line:

Command:enter tabsurf right-click
Current wire frame density: SURFTAB1=2
```

Select objects for path curve:pick the hexagon
Select object for direction vector:pick the pline Command:

```

See Fig. 17.32.


Fig. 17.32 Example - Tabsurf

\section*{REVISION NOTES}
1. The UCS (User Coordinate System) tools can be called from the View/Coordinates panel, from the two toolbars UCS and UCS II or by entering ucs at the command line.
2. The variable UCSFOLLOW must first be set on (to 1) before operations of the UCS can be brought into action.
3. There are several types of UCS icon-2D (different types), 3D (different types), Pspace.
4. The position of the plane in 3D space on which a drawing is being constructed can be varied using tools from the UCS panel.
5. The planes on which drawings constructed on different planes in 3D space can be saved in the UCS dialog.
6. The tools Edgesurf, Rulesurf and Tabsurf can be used to construct surfaces in addition to surfaces which can be constructed from plines and lines using the Extrude tool.

\section*{Exercises}

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/ 978-1-85617-868-6
1. Fig. 1733 is a rendering of a two-view projection of an angle bracket in which two pins are placed in holes in each of the arms of the bracket. Fig. 1734 is a two-view projection of the bracket.

Construct a 3D model of the bracket and its pins.

Add lighting to the scene and materials to the parts of the model and render.


Fig. 17.33 Exercise 1 - a rendering


Fig. 17.34 Exercise 1 - details of shape and sizes
2. The two-view projection (Fig. 17.35) shows a stand consisting of two hexagonal prisms. Circular holes have been cut right through each face of the smaller hexagonal prism and rectangular holes with rounded ends have been cut right through the faces of the larger.

Construct a 3D model of the stand. When completed add suitable lighting to the scene. Then add a material to the model and render (Fig. 17 36).


Fig. 17.35 Exercise 2 - details of shapes and sizes


Fig. 17.36 Exercise 2 - a rendering
3. The two-view projection Fig. 17.37 shows a ducting pipe. Construct a 3D model drawing of the pipe. Place in a SW Isometric view, add lighting to the scene and a material to the model and render.


Fig. 17.37 Exercise 3 - details of shape and sizes
4. A point marking device is shown in two two-view projections in Fig. 17.38. The device is composed of three parts - a base, an arm and a pin. Construct a 3D model of the assembled device and add appropriate materials to each part. Then add lighting to the scene and render in a SW Isometric view (Fig. 17.39).


Fig. 17.38 Exercise 4 - details of shapes and sizes


Fig. 17.39 Exercise 4 - a rendering
5. A rendering of a 3D model drawing of the connecting device shown in the orthographic projection Fig. 17.41 is given in Fig. 17.40. Construct the 3D model drawing of the device and add suitable lighting to the scene.

Then place in the ViewCube/Isometric view, add a material to the model and render.


Fig. 17.40 Exercise 5 - a rendering



Fig. 17.42 Exercise 6
7. An orthographic projection of the parts of a lathe steady is given in Fig. 17.43. From the dimensions shown in the drawing, construct an assembled 3D model of the lathe steady.

When the 3D model has been completed, add suitable lighting and materials and render the model Fig. 17.44.


Fig. 17.43 Exercise 7 - details


Fig. 17.44 Exercise 7 - a rendering
8. Construct suitable polylines to sizes of your own discretion in order to form the two surfaces to form the box shape shown in Fig. 17.45 with the aid of the Rulesurf tool. Add lighting and a material and render the surfaces formed. Construct another three Edgesurf surfaces to form a lid for the box. Place the surface in a position above the box, add a material and render (Fig. 17.46).


Fig. 17.45 Exercise 8 - the box


Fig. 17.46 The box and its lid
9. Fig. 17.47 shows a polyline for each of the 4 objects from which the surface shown in Fig. 17.48 was obtained. Construct the surface and shade in Realistic shading.


Fig. 17.47 Exercise 9 - one of the polylines from which the surface was obtained


Fig. 17.48 Exercise 9
10. The surface model for this exercise was constructed from 3 Edgesurf surfaces working to the suggested outlines for the surface as shown in Fig. 17.51. The sizes of the outlines of the objects in each case are left to your discretion. Fig. 17.49 shows the completed surface model. Fig. 17.50 shows the three surfaces of the model separated from each other.


Fig. 17.49 Exercise 10


Fig. 17.50 The three surfaces


Fig. 17.51 Outlines for the three surfaces
11. Fig. 1752 shows in a View Block/Isometric view a semicircle of radius \(\mathbf{2 5}\) constructed in the View Cube/Top view on a layer of colour magenta with a semicircle of radius \(\mathbf{7 5}\) constructed on the View Block/Front view with its left-hand end centred on the semicircle. Fig. 17.53 shows a surface constructed from the two semicircles in a Visual Styles/Realistic mode.


Fig. 17.52 Exercise 11 - the circle and semicircle


Fig. 17.53 Exercise 11

\title{
Chapter 18 \\ \\ Editing 3D solid \\ \\ Editing 3D solid models
}

\section*{AIMS OF THIS CHAPTER}

The aims of this chapter are:
1. To introduce the use of tools from the Solid Editing panel.
2. To show examples of a variety of 3D solid models.

\section*{The Solid Editing Tools}


Fig. 18.1 The Solid Editing panel

The Solid Editing tools can be selected from the Home/Solid Editing panel (Fig. 18.1) or from the Solid Editing toolbar, called to screen from the Tools/Toolbars/AutoCAD drop-down menu (Fig. 18.2).

\section*{}

Fig. 18.2 The Solid Editing toolbar
Examples of the results of using some of the Solid Editing tools are shown in this chapter. These tools are of value if the design of a 3D solid model requires to be changed (edited), although some have a value in constructing parts of 3D solids which cannot easily be constructed using other tools.

\section*{First example - Extrude Faces tool (Fig. 18.3)}
1. Set ISOLINES to 24.
2. In the ViewCube/Right construct a cylinder of radius \(\mathbf{3 0}\) and height \(\mathbf{3 0}\) (Fig. 18.3).
3. In the ViewCube/Front construct the pline Fig. 18.3. Mirror the pline to the other end of the cylinder.


Fig. 18.3 First example - Extrude Faces tool - first stages
4. In the ViewCube/Top move the pline to lie central to the cylinder.
5. Place the screen in the ViewCube/Isometric.
6. Click the Extrude Faces tool icon in the Home/Solid Editing panel (Fig. 18.4). The command line shows:

Command:_solidedit
Solids editing automatic checking: SOLIDCHECK=1
Enter a solids editing option [Face/Edge/Body/
Undo/eXit] <eXit>: _face
Enter a face editing option
[Extrude/Move/Rotate/Offset/Taper/Delete/Copy/ coLor/mAterial/Undo/eXit] <eXit>: _extrude

Fig. 18.4 The Extrude Faces tool from the Home/ Solid Editing panel



Fig. 18.7 Second example - Extrude Faces tool


Fig. 18.5 First example - Extrude Faces tool
7. Repeat the operation using the pline at the other end of the cylinder as a path.
8. Add lights and a material and render the 3D model (Fig. 18.5).
```

```
Select faces or [Undo/Remove]:pick the cylinder 2
```

Select faces or [Undo/Remove]:pick the cylinder 2
faces found.
faces found.
Select faces or [Undo/Remove/ALL]:enter
Select faces or [Undo/Remove/ALL]:enter
r right-click
r right-click
Remove faces or [Undo/Add/ALL]:right-click
Remove faces or [Undo/Add/ALL]:right-click
Specify height of extrusion or [Path]:enter p
Specify height of extrusion or [Path]:enter p
(Path) right-click
(Path) right-click
Select extrusion path:pick the left-hand path pline
Select extrusion path:pick the left-hand path pline
Solid validation started.
Solid validation started.
Solid validation completed.
Solid validation completed.
Enter a face editing option
Enter a face editing option
[Extrude/Move/Rotate/Offset/Taper/Delete/Copy/
[Extrude/Move/Rotate/Offset/Taper/Delete/Copy/
coLor/mAterial/Undo/eXit] <eXit>:right-click
coLor/mAterial/Undo/eXit] <eXit>:right-click
Command:
Command:
7. Repeat the operation using the pline at the other end of the cylinder
7. Repeat the operation using the pline at the other end of the cylinder
as a path.
as a path.
8. Add lights and a material and render the 3D model (Fig. 18.5).

```
8. Add lights and a material and render the 3D model (Fig. 18.5).
```


Note

```
Note the prompt line which includes the statement \(\mathbf{S O L I D C H E C K}=\mathbf{1}\). If the variable SOLIDCHECK is set on (to \(\mathbf{1}\) ) the prompt lines include the lines SOLIDCHECK = 1, Solid validation started and Solid validation completed. If set to \(\mathbf{0}\) these two lines do not show.
```

Fig. 18.6 Second example - Extrude Faces tool - pline for path

Second example - Extrude Faces tool (Fig. 18.7)

1. Construct a hexagonal extrusion just $\mathbf{1}$ unit high in the ViewCube/Top.
2. Change to the ViewCube/Front and construct the curved pline in Fig. 18.6.
3. Back in the ViewCube/Top view, move the pline to lie central to the extrusion.
4. Place in the ViewCube/Isometric and extrude the top face of the extrusion along the path of the curved pline.
5. Add lighting and a material to the model and render (Fig. 18.7).

Note

This example shows that a face of a 3D solid model can be extruded along any suitable path curve. If the polygon on which the extrusion had been based had been turned into a region, no extrusion could have taken place. The polygon had to be extruded to give a face to a 3D solid.

Third example - Move Faces tool (Fig. 18.8)

1. Construct the 3D solid drawing shown in the left-hand drawing of Fig. 18.8 from three boxes which have been united using the Union tool.
2. Click on the Move Faces tool in the Home/Solid Editing panel (see

Fig. 18.4, page 366). The command line shows:
Command:_solidedit
[prompts]_face
Enter a face editing option
[prompts]:_move
Select faces or [Undo/Remove]:pick the model face
4 face found.
Select faces or [Undo/Remove/ALL]:right-click
Specify a base point or displacement:pick
Specify a second point of displacement:pick [further prompts]:

And the picked face is moved - right-hand drawing of Fig. 18.8.

Fig. 18.8 Third example - Solid, Move Faces tool

Fourth example - Offset Faces (Fig. 18.9)

1. Construct the 3D solid drawing shown in the left-hand drawing of Fig.
18.9 from a hexagonal extrusion and a cylinder which have been united using the Union tool.
2. Click on the Offset Faces tool icon in the Home/Solid Editing toolbar (see Fig. 18.4, page 366). The command line shows:

Command:_solidedit
[prompts]:_face
[prompts]
[prompts]:_offset
Select faces or [Undo/Remove]:pick the bottom face of the 3D model 2 faces found.

Fig. 18.9 Fourth example - Offset Faces tool

```
Select faces or [Undo/Remove/All]:enter
    r right-click
Select faces or [Undo/Remove/All]:pick highlighted
    faces other than the bottom face 2 faces found,
    1 removed
Select faces or [Undo/Remove/All]:right-click
Specify the offset distance:enter 30 right-click
```

3. Repeat, offsetting the upper face of the cylinder by $\mathbf{5 0}$ and the righthand face of the lower extrusion by 15.

The results are shown in Fig. 18.9.
Fifth example - Taper Faces tool (Fig. 18.10)

1. Construct the 3D model as in the left-hand drawing of Fig. 18.10. Place in ViewCube/Isometric.
2. Call Taper Faces. The command line shows:

Command:_solidedit
[prompts]:_face

Fig. 18.10 Fifth example - Taper Faces tool
[prompts]
[prompts]:_taper
Select faces or [Undo/Remove]: pick the upper face of the base 2 faces found.
Select faces or [Undo/Remove/All]:enter r right-click
Select faces or [Undo/Remove/All]:pick highlighted
faces other than the upper face 2 faces found,
1 removed
Select faces or [Undo/Remove/All]:right-click
Specify the base point:pick a point on left-hand edge of the face
Specify another point along the axis of tapering:pick a point on the right-hand edge of the face
Specify the taper angle:enter 10 right-click
And the selected face tapers as indicated in the right-hand drawing (Fig. 18.10).

Sixth example - Copy Faces tool (Fig. 18.12)

1. Construct a 3D model to the sizes as given in Fig. 18.11.

Fig. 18.11 Sixth example - Copy Faces tool - details of the 3D solid model
2. Click on the Copy Faces tool in the Home/Solid Editing toolbar (see Fig. 18.4, page 366). The command line shows:

Command:_solidedit
[prompts]:_face

Fig. 18.12 Sixth example - Copy Faces tool
[prompts]
[prompts]:_copy
Select faces or [Undo/Remove]:pick the upper face of the solid model 2 faces found.
Select faces or [Undo/Remove/All]:enter r right-click
Select faces or [Undo/Remove/All]:pick highlighted face not to be copied 2 faces found, 1 removed Select faces or [Undo/Remove/All]:right-click
Specify a base point or displacement:pick anywhere on the highlighted face
Specify a second point of displacement:pick a point some 50 units above the face
3. Add lights and a material to the 3D model and its copied face and render (Fig. 18.12).

Seventh example - Color Faces tool (Fig. 18.14)

1. Construct a 3D model of the wheel to the sizes as shown in Fig. 18.13.
2. Click the Color Faces tool icon in the Home/Solid Editing toolbar (see Fig. 18.4, page 366). The command line shows:

Command:_solidedit
[prompts]:_face

Fig. 18.13 Seventh example - Color Faces tool - details of the 3D model

```
[prompts]
[prompts]:_color
Select faces or [Undo/Remove]:pick the inner face
    of the wheel 2 faces found
Select faces or [Undo/Remove/All]:enter r
    right-click
Select faces or [Undo/Remove/All]:pick highlighted
    faces other than the required face 2 faces
    found, 1 removed
Enter new color <ByLayer>:enter 1 (which is
    red) right-click
```

3. Add lights and a material to the edited 3D model and render (Fig. 18.14).

Fig. 18.14 Seventh example - Color Faces tool

Examples of more 3D models

These 3D models can be constructed in the acadiso3D.dwt screen. The descriptions of the stages needed to construct these 3D models have been reduced from those given in earlier pages, in the hope that readers have already acquired a reasonable skill in the construction of such drawings.

First example (Fig. 18.16)

1. Front view. Construct the three extrusions for the back panel and the two extruding panels to the details given in Fig. 18.15.
2. Top view. Move the two panels to the front of the body and union the three extrusions. Construct the extrusions for the projecting parts holding the pin.

Fig. 18.16 First example - 3D models

Fig. 18.15 First example - 3D models - details of sizes and shapes
3. Front view. Move the two extrusions into position and union them to the back.
4. Top view. Construct two cylinders for the pin and its head.
5. Top view. Move the head to the pin and union the two cylinders.
6. Front view. Move the pin into its position in the holder. Add lights and materials.
7. Isometric view. Render. Adjust lighting and materials as necessary (Fig. 18.16).

Second example (Fig. 18.18)

1. Top. Construct polyline outlines for the body extrusion and the solids of revolution for the two end parts using the dimensions in Fig. 18.17. Extrude the body and subtract its hole and using the Revolve tool form the two end solids of revolution.

Fig. 18.17 Second example - 3D models - dimensions
2. Right. Move the two solids of revolution into their correct positions relative to the body and union the three parts. Construct a cylinder for the hole through the model.
3. Front. Move the cylinder to its correct position and subtract from the model.
4. Top. Add lighting and a material.
5. Isometric. Render (Fig. 18.18).

Fig. 18.18 Second example - 3D models

Third example (Fig. 18.20)

1. Front. Construct the three plines needed for the extrusions of each part of the model (details Fig. 18.19). Extrude to the given heights. Subtract the hole from the $\mathbf{2 0}$ high extrusion.
2. Top. Move the $\mathbf{6 0}$ extrusion and the $\mathbf{1 0}$ extrusion into their correct positions relative to the $\mathbf{2 0}$ extrusion. With Union form a single 3D model from the three extrusions.
3. Add suitable lighting and a material to the model.
4. Isometric. Render (Fig. 18.20).

Fig. 18.19 Third example - 3D models - details of shapes and sizes

Fig. 18.20 Third example - 3D models

Fourth example (Fig. 18.21)

1. Front. Construct the polyline - left-hand drawing in Fig. 18.21.
2. With the Revolve tool from the Home/3D Modeling panel construct a solid of revolution from the pline.
3. Top. Add suitable lighting for a coloured glass material.
4. Isometric. Render - right-hand illustration Fig. 18.21.

Exercises

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/ 978-1-85617-868-6

1. Working to the shapes and dimensions as given in the orthographic projection Fig. 18.22, construct the exploded 3D model as shown in Fig. 18.23. When the model has been constructed add suitable lighting and apply materials, followed by rendering.

Fig. 18.22 Exercise 1-orthographic projection

Fig. 18.23 Exercise 1 - rendered 3D model
2. Working to the dimensions given in the orthographic projections of the three parts of this 3D model (Fig. 18.24), construct the assembly as shown in the rendered 3D model Fig. 18.25.

Fig. 18.24 Exercise 2 - details of shapes and sizes

Fig. 18.25 Exercise 2

Add suitable lighting and materials, place in one of the isometric viewing positions and render the model.
3. Construct the 3 D model shown in the rendering Fig. 18.26 from the details given in the parts drawing Fig. 18.27.

Fig. 18.26 Exercise 3

Fig. 18.27 Exercise 3 - the parts drawing

4. A more difficult exercise.

A rendered 3D model of the parts of an assembly are shown in Fig. 18.28.
Working to the details given in the three orthographic projections Figures 18.28, 18.29 and 18.30 , construct the two parts of the 3D model, place them in suitable positions relative to each other, add lighting and materials and render the model (Fig. 18.31).

Fig. 18.28 Exercise 4 - first orthographic projection

Fig. 18.29 Exercise 4 - second orthographic projection

Fig. 18.31 Exercise 4

Fig. 18.30 Exercise 4 - third orthographic projections

Other features of 3D modelling

AIMS OF THIS CHAPTER

The aims of this chapter are:

1. To give a further example of placing raster images in an AutoCAD drawing.
2. To give examples of methods of printing or plotting not given in previous chapters.
3. To give examples of polygonal viewports.

Raster Images in AutoCAD drawings

Example - Raster image in a drawing (Fig. 19.5)

This example shows the raster file Fig05.bmp of the 3D model constructed to the details given in the drawing Fig. 19.1.

Fig. 19.1 Raster image in a drawing - drawing into which file is to be inserted

Raster images are graphics images in files with file names ending with the extensions *.bmp; *.pcx; *.tif and the like. The types of graphics files which can be inserted into AutoCAD drawings can be seen by first clicking on the External References Palette icon in the View/Palettes panel (Fig. 19.2).

Fig. 19.3 The External References palette

Fig. 19.2 Selecting External References Palette from the View/Palettes panel

Then select Attach Image... from the pop-up menu brought down with a click on the left-hand icon at the top of the palette which brings the Select Image File dialog (Fig. 19.3) which brings the Select Reference File dialog on screen (Fig. 19.4).

In the dialog select the required raster file (in this example Fig05.bmp) and click the Open button. The Attach Image dialog appears showing

Fig. 19.4 Raster image in a drawing - the Select Reference File and Attach Image dialogs
the selected raster image. If satisfied click the OK button. The dialog disappears and the command line shows:

Command:

```
IMAGEATTACH
```

Specify insertion point $<0,0\rangle: p i c k$
Base image size: Width: 1.000000, Height:
1.041958, Millimetres

Specify scale factor <1>:enter 60 right-click
Command:
And the image is attached on screen at the picked position.

How to produce a raster image

1. Construct the 3D model to the shapes and sizes given in Fig. 19.1 working in four layers each of a different colour.
2. Place in the ViewCube/Isometric view.
3. Shade the 3D model in Realistic visual style.
4. Zoom the shaded model to a suitable size and press the Print Scr key of the keyboard.
5. Open the Windows Paint application and click Edit in the menu bar, followed by another click on Paste in the drop-down menu. The whole AutoCAD screen which includes the shaded 3D assembled model appears.
6. Click the Select tool icon in the toolbar of Paint and window the 3D model. Then click Copy in the Edit drop-down menu.
7. Click New in the File drop-down menu, followed by a click on No in the warning window which appears.
8. Click Paste in the Edit drop-down menu. The shaded 3D model appears. Click Save As... from the File drop-down menu and save the bitmap to a suitable file name - in this example Fig05.bmp.
9. Open the orthographic projection drawing Fig. 19.1 in AutoCAD.
10. Following the details given on page 380 attach Fig05.bmp to the drawing at a suitable position (Fig. 19.5).

Fig. 19.5 Example - Raster image in a drawing

Notes

1. It will normally be necessary to enter a scale in response to the prompt lines otherwise the raster image may appear very small on screen. If it does it can be zoomed anyway.
2. Place the image in position in the drawing area. In Fig. 19.5 the orthographic projections have been placed within a margin and a title block has been added.

Printing/plotting

Hardcopy (prints or plots on paper) from a variety of different types of AutoCAD drawings of 3D models can be obtained. Some of this variety has already been shown on pages 317 to 319 in Chapter 15.

First example - Printing/plotting (Fig. 19.8)

If an attempt is made to print a multiple viewport screen in Model Space with all viewport drawings appearing in the plot, only the current viewport will be printed. To print or plot all viewports:

1. Open a 4-viewport screen of the assembled 3D model shown in the first example (Fig. 19.5).
2. Make a new layer vports of colour yellow. Make this layer current.
3. Click the Layout1 button in the status bar (Fig. 19.6). The screen changes to a PSpace layout.

Fig. 19.6 First example - the Layout1 button in the status bar
4. Erase the yellow outline and the view is erased.
5. At the command line:

Command:enter mv
MVIEW
Specify corner of viewport or
[ON/OFF/Fit/Shadeplot/Lock/Object/Polygonal/
Restore/LAyer/2/3/4] <Fit>:enter r right-click
Enter viewport configuration name or [?]
<*Active>:right-click
Specify first corner or [Fit] <Fit>:right-click
Command:
6. Turn layer vports off
7. Click the Plot tool icon in the Quick Access bar (Fig. 19.7). A Plot dialog appears.
8. Check that the printer/plotter is correct and the paper size is also correct.
9. Click the Preview button. The full preview of the plot appears (Fig. 19.8).
10. Right-click anywhere in the drawing and click on Plot in the rightclick menu which then appears.
11. The drawing plots (or prints).

Fig. 19.7 The Plot tool icon in the Quick Access toolbar

Fig. 19.8 First example - Printing/plotting

Second example - Printing/plotting (Fig. 19.9)

1. Open the orthographic drawing with its raster image Fig. 19.5.
2. While still in Model Space click the Plot tool icon. The Plot dialog appears. Check that the required printer/plotter and paper size have been chosen.
3. Click the Preview button.
4. If satisfied with the preview (Fig. 19.9), right-click and in the menu which appears click the name Plot. The drawing plots.

Third example - Printing/plotting (Fig. 19.10)

1. Open the 3D model drawing of the assembly shown in Fig. 19.8 in a single ViewCube/Isometric view.

Fig. 19.9 Second example - Printing/plotting
2. While in MSpace, click the Plot tool icon. The Plot dialog appears.
3. Check that the plotter device and sheet sizes are correct. Click the Preview button.
4. If satisfied with the preview (Fig. 19.10) right-click and click on Plot in the menu which appears. The drawing plots.

Fig. 19.10 Third example-Printing/plotting

Fourth example - Printing/plotting

Fig. 19.11 shows a Plot Preview of the 3D solid model in Fig. 18.31 from page 378.

Fig. 19.11 Fourth example - Printing/plotting

Polygonal viewports (Fig. 19.12)

The example to illustrate the construction of polygonal viewports is based upon Exercise 6. When the 3D model for this exercise has been completed in Model Space:

1. Make a new layer vports of colour blue and make this layer current.
2. Click the Layout1 button in the status bar.
3. Erase the viewport with a click on its bounding line. The outline and its contents are erased.
4. At the command line:

Command:enter mv right-click
[prompts]:enter 4 right-click
[prompts]:right-click
Regenerating model.
Command:
And the model appears in a 4-viewport layout.
5. Click the Model button. With a click in each viewport in turn and using the ViewCube settings set viewports in Front, Right, Top and Isometric views respectively.
6. Zoom each viewport to All.
7. Click the Layout1 button to turn back to PSpace.
8. Enter $\mathbf{m v}$ at the command line, which shows:

```
Command:enter mv right-click
MVIEW
    [prompts]:enter p (Polygonal) right-click
Specify start point: In the top right viewport
    pick one corner of a square
Specify next point or [Arc/Close/Length/Undo]:pick
    next corner for the square
Specify next point or [Arc/Close/Length/Undo]:
    pick next corner for the square
Specify next point or [Arc/Close/Length/
    Undo]:enter c (Close)right-click
Regenerating model.
Command:
```

And a square viewport outline appears in the top right viewport within which is a copy of the model.
9. Repeat in each of the viewports with different shapes of polygonal viewport outlines (Fig. 19.11).
10. Click the Model button.
11. In each of the polygonal viewports make a different isometric view. In the bottom right viewport change the view using the 3D Orbit tool.
12. Turn the layer vports off. The viewport borders disappear (Fig. 19.13).
13. Click the Plot icon. Make plot settings in the Plot dialog. Click on the Preview button of the Plot dialog. The Preview appears (Fig. 19.12).

The Navigation Wheel

The Navigation Wheel can be called from the View/Navigate panel as shown in Fig. 19.14. The reader is advised to experiment with the Navigation Wheel in its various forms. See Fig. 19.14.

Fig. 19.12 Polygonal viewports - plot preview

Fig. 19.13 Polygonal viewports - plot preview after turning the layer vports off

Fig. 19.14 The Navigation Wheel

The Mesh tools

Fig. 19.15 shows a series of illustrations showing the actions of the Mesh tools and the three 3D tools 3dmove, 3dscale and 3drotate. The illustrations show:

1. A box constructed using the Box tool.
2. The box acted upon by the Smooth Object tool from the Home/Mesh panel.
3. The box acted upon by the Smooth Mesh tool.
4. The box acted upon by the Mesh Refine tool.
5. The Smooth Refined box acted upon by the 3dmove tool.
6. The Smooth Refined box acted upon by the 3dscale tool.
7. The Smooth Refined box acted upon by the 3drotate tool. Note the gizmos shown in Fig. 19.15.

Fig. 19.15 Mesh, 3dmove, 3dscale and 3drotate tools

Exercises

Methods of constructing answers to the following exercises can be found in the free website:
http://books.elsevier.com/companions/ 978-1-85617-868-6

1. Working to the shapes and sizes given in Fig. 19.16, construct an assembled 3D model drawing of the spindle in its two holders, add lighting and apply suitable materials and render (Fig. 19.17).

Fig. 19.16 Exercise 1 - details of shapes and sizes

Fig. 19.17 Exercise 1
2. Fig. 19.18 shows a rendering of the model for this exercise and Fig. 19.19 an orthographic projection giving shapes and sizes for the
model. Construct the 3D model, add lighting, apply suitable materials and render.

Fig. 19.18 Exercise 2

Fig. 19.19 Exercise 2 - orthographic projection
3. Construct a 3D model drawing to the details given in Fig. 19.21. Add suitable lighting and apply a material, then render as shown in Fig. 19.20.

Fig. 19.20 Exercise 3 - ViewCube/Isometric view

Fig. 19.21 Exercise 3
4. Construct an assembled 3D model drawing working to the details given in Fig. 19.22. When the 3D model drawing has been constructed disassemble the parts as shown in the given exploded isometric drawing (Fig. 19.23).

Fig. 19.22 Exercise 4 - details of shapes and sizes

Fig. 19.23 Exercise 4 - an exploded rendered model
5. Working to the details shown in Fig. 19.24, construct an assembled 3D model, with the parts in their correct positions relative to each other. Then separate the parts as shown in the 3D rendered model drawing Fig. 19.25. When the 3D model is complete add suitable lighting and materials and render the result.

Fig. 19.24 Exercise 5 - details drawing

Fig. 19.25 Exercise 5 - exploded rendered view
6. Working to the details shown in Fig. 19.26 construct a 3D model of the parts of the wheel with its handle.

Two renderings of 3D models of the rotating handle are shown in Fig. 19.27, one with its parts assembled, the other with the parts in an exploded position relative to each other.

Fig. 19.27 Exercise 6 - renderings Internet tools and design

Chapter 20
 Internet Tools and Help

AIMS OF THIS CHAPTER

The purpose of this chapter is to introduce the tools which are available in AutoCAD 2010 which make use of facilities available on the World Wide Web (www).

Emailing drawings

As with any other files which are composed of data, AutoCAD drawings can be sent by email as attachments. If a problem with the security of the drawings is involved, they can be encapsulated with a password as the drawings are saved prior to being attached in an email. To encrypt a drawing with a password, click Tools in the Save Drawing As dialog and from the pop-up list which appears click Security Options... (Fig. 20.1).

Fig. 20.1 Selecting Security Options... in the Save Drawing As dialog

Then in the Security Options dialog which appears (Fig. 20.2) enter a password in the Password or phrase to open this drawing field, followed by a click on the OK button. After entering a password click the OK button and enter the password in the Confirm Password dialog which appears.

Fig. 20.2 Entering and confirming a password in the Security Options dialog

The drawing then cannot be opened until the password is entered in the Password dialog which appears when an attempt is made to open the drawing by the person receiving the email (Fig. 20.3).

Fig. 20.3 The Password dialog appearing when a password-encrypted drawing is about to be opened

There are many reasons why drawings may need to be passwordencapsulated in order to protect confidentiality of the contents of drawings.

Creating a web page (Fig. 20.5)

Fig. 20.4 The Publish to Web tool in the File drop-down menu

To create a web page which includes AutoCAD drawings first left-click Publish to Web... in the File drop-down menu (Fig. 20.4).

A series of Publish to Web dialogs appear, some of which are shown here in Figs. 20.5 to 20.7. After making entries in the dialogs which come on screen after each Next button is clicked, the resulting web page such as that shown in Fig. 20.7 will be seen. Double-click in any of the thumbnail views in this web page and another page appears showing the selected drawing in full.

Fig. 20.5 The Publish to Web - Create Web Page dialog

Publish to Web - Select Template

Fig. 20.6 The Publish to Web - Select Template dialog

Fig. 20.7 The Web Publishing - Windows Internet Explorer page

Fig. 20.8 The Create Transmittal dialog

The eTransmit tool

At the command line enter etransmit. The Create Transmittal dialog appears (Fig. 20.8). The transmittal shown in Fig. 20.8 is the drawing on screen at the time the transmittal was made plus a second drawing. Fill in the details as necessary. The transmittal is sent as a zip file. A zip file is easier and quicker to email than a drawing file. The AutoCAD drawing can be obtained by unzipping the zip file at the receiving end.

Note

There is no icon for eTransmit in the ribbon panels.

Figure. 20.9 shows a method of getting help. In this example help on using the Break tool is required. Enter Break in the Search field, followed by

Break	Search Search I Did you Displays Search Results panel to access results from multiple search locations．

Altcean tidy
（3）Modify A Dimension（Procedure）
（？）Create and Edt Columns in Muliline Text （Concept）
（7）Modify A Dimension
（？）View the Product Readme
（？）Get Additional Help（Concept）
Command Reference
（7）DIMBREAK（Quick Reference）
（3）BREAK（Quick Reference）
（？）VBA Options Dialog Box（Quick Reference）
（？）Symbols and Arrows Tab（Quick Reference）
（？）DIMGAP（Quick Reference）
Customization Guide
No results found
New Features Workshop
（？）Create Better Tables
（3）Add a Break to a Dimension

Altodask Onine

Solutions
（9）Using PREAK command causes segmert to detach（1／22／2002 7：31 PM）
（9）Break macro does not function correctly （1／17／2002 9．02 PM）
Q Entering line breaks in table cells（1／30／2007 10：04 AM）
（9）Select the whole block instead of a single object during．．．（1／10／2001 4：30 PM）
（Q）Acettest Fas prevents Visual LISP IDE warning about ACAD．．．（1／16／1999 1：56 AM）
Communities
［5］Break at point－keybord command（1／26／2006 $11: 51$ AM）
15．Re：break the line at many intersections in one time（ $9 / 25 / 200711 / 43$ AM）
5（5）Re：polyline add／delete vertex（9／18／2008 3：02 PM）
（5）Re：BREAK USING OBJECT（7／25／2006 9：45 PM）
［5］Re：Breaking Polylines into measured lengths （11／20／2008 10.36 PM）

Fig．20．9 Help for Break
a click on the Search button. A list appears from which the operator can select what he/she considers to be the most appropriate response.

The new features workshop

Click the down pointing arrow to the right of the ? icon and select New Features Workshop from the menu which appears (Fig. 20.10). Fig. 20.11 shows one of the features from the New Features window describing how to Create, Smooth and Refine a 3D Mesh.

Fig. 20.10 Selecting New Features Workshop

Fig. 20.11 The New Features Workshop showing Create, Smooth and Refine a 3D Mesh

Chapter 21 Design and AutoCAD 2010

AIMS OF THIS CHAPTER

The aims of this chapter are:

1. To describe reasons for using AutoCAD.
2. To describe methods of designing artefacts and the place of AutoCAD in the design process.
3. To list the system requirements for running AutoCAD 2010 software.
4. To list some of the enhancements in AutoCAD 2010.

10 reasons for using AutoCAD

1. A CAD software package such as AutoCAD 2010 can be used to produce any form of technical drawing.
2. Technical drawings can be produced much more speedily using AutoCAD than when working manually - probably as much as 10 times as quickly when used by skilled AutoCAD operators.
3. Drawing with AutoCAD is less tedious than drawing by hand features such as hatching, lettering, adding notes etc. are easier, quicker and indeed more accurate to construct.
4. Drawings or parts of drawings can be moved, copied, scaled, rotated, mirrored and inserted into other drawings without having to redraw.
5. AutoCAD drawings can be saved to a file system without necessarily having to print the drawing. This can save the need for large paper drawing storage areas.
6. The same drawing or part of a drawing need never be drawn twice, because it can be copied or inserted into other drawings with ease. A basic rule when working with AutoCAD is: Never draw the same feature twice.
7. New details can be added to drawings or be changed within drawings without having to mechanically erase the old detail.
8. Dimensions can be added to drawings with accuracy, reducing the possibility of making errors.
9. Drawings can be plotted or printed to any scale without having to redraw.
10. Drawings can be exchanged between computers and/or emailed around the world without having to physically send the drawing.

The place of AutoCAD 2010 in designing

The contents of this book are only designed to help those who have a limited (or no) knowledge and skills of the construction of technical drawings using AutoCAD 2010. However, it needs to be recognised that the impact of modern computing on the methods of designing in industry has been immense. Such features as analysis of stresses, shear forces, bending forces and the like can be carried out more quickly and accurately using computing methods. The storage of data connected with a design and the ability to recover the data speedily are carried out much more easily using computing methods than prior to the introduction of computing.

AutoCAD 2010 can play an important part in the design process because technical drawings of all types are necessary for achieving well-designed artefacts, whether it be an engineering component, a machine, a building, an electronics circuit or any other design project.

In particular, two-dimensional drawings (2D drawings) which can be constructed in AutoCAD 2010 are still of great value in modern industry. AutoCAD 2010 can also be used to produce excellent and accurate threedimensional (3D) models, which can be rendered to produce photographiclike images of a suggested design. Although not dealt with in this book, data from 3D models constructed in AutoCAD 2010 can be taken for use in computer aided machining (CAM).

At all stages in the design process, either (or both) 2D or 3D drawings play an important part in aiding those engaged in designing to assist in assessing the results of their work at various stages. It is in the design process that drawings constructed in AutoCAD 2010 play an important part.

In the simplified design process chart shown in Fig. 21.1 an asterisk (*) has been shown against those features where the use of AutoCAD 2010 can be regarded as being of value.

A design chart (Fig. 21.1)

The simplified design chart Fig. 21.1 shows the following features:
Design brief: A design brief is a necessary feature of the design process. It can be in the form of a statement, but it is usually much more. A design

Fig. 21.1 A simplified design chart
brief can be a written report which not only includes a statement made of the problem which the design is assumed to be solving, but includes preliminary notes and drawings describing difficulties which may be encountered in solving the design. It may include charts, drawings, costings etc. to emphasise some of the needs in solving the problem for which the design is being made.
Research: The need to research the various problems which may arise when designing is often much more demanding than the chart (Fig. 21.1) shows. For example, the materials being used may require extensive research as to costing, stress analysis, electrical conductivity, difficulties in machining or in constructional techniques and other such features.
Ideas for solving the brief: This is where technical, other drawings and sketches play an important part in designing. It is only after research that designers can ensure the brief will be fulfilled.
Models: These may be constructed models in materials representing the actual materials which have been chosen for the design, but in addition 3D solid model drawings such as those which can be constructed in AutoCAD 2010 can be of value. Some models may also be made in the materials from which the final design is to be made so as to allow testing of the materials in the design situation.
Chosen solution: This is where the use of drawings constructed in AutoCAD 2010 is of great value. 2D and 3D drawings come into their own here. It is from such drawings that the final design will be manufactured.
Realisation: The design is made. There may be a need to manufacture a number of the designs in order to enable evaluation of the design to be fully assessed.
Evaluation: The manufactured design is tested in situations in which it is liable to be placed in use. Evaluation will include reports and notes which could include drawings with suggestions for amendments to the working drawings from which the design was realised.

AutoCAD 2010 contains major enhancements over previous releases, whether working in either a 2D or a 3D workspace. Please note that not all the enhancements in AutoCAD 2010 are described in this introductory book. Among the more important enhancements are the following:

1. When first loaded, an Initial Setup dialog offers choice of use.
2. The Ribbon has been amended and brought up to date.
3. New AutoCAD 2010 drawing file format.
4. Considerable updating of 3D modelling.
5. 3D printing enhanced.
6. Some dialogs have been amended.
7. Among others, the following features have been enhanced:

Application menu - top left-hand corner of AutoCAD 2010 window Quick Access Bar
Dimensioning
Spell checking
Pedit
Splineedit
Purge
Sheet sets
Hatching methods
8. External References more flexible.
9. New VROTATEASSOC variable allows views to be rotated.
10. PDF systems enhanced.
11. Parametric drawing introduced allowing geometric and dimensional functions to be correct when a feature in a drawing is modified.
12. New command MEASUREGEOM allows distance, radius, angle, area and volume to be measured.
13. New Help features in an InfoCenter (top right-hand corner of AutoCAD 2010 window).
14. Some new set variables.

System requirements for running AutoCAD 2010

Note: there are two editions of AutoCAD 2010 - 32 bit and 64 bit editions.
Operating system: Windows XP Professional, Windows XP Professional (x64 Edition), Windows XP Home Edition, Windows 2000 or Windows Vista 32 bit, Windows Vista 64 bit.
Microsoft Internet Explorer 7.0.
Processor: Pentium III 800 Mhz.
Ram: At least 128 MB.
Monitor screen: 1024×768 VGA with True Colour as a minimum.
Hard disk: A minimum of 300 MB .
Graphics card: An AutoCAD-certified graphics card. Details can be found on the web page AutoCAD Certified Hardware XML Database.

Appendices

Appendix A

List of tools

AutoCAD 2010 allows the use of over 300 tools. Some operators prefer using the word "commands", although command as an alternative to tool is not in common use today. Most of these tools are described in this list. Many of the tools described here have not been used in this book, because this book is an introductory text designed to initiate readers into the basic methods of using AutoCAD 2010. It is hoped the list will encourage readers to experiment with those tools not described in the book. The abbreviations for tools which can be abbreviated are included in brackets after the tool name. Tool names can be entered in upper or lower case.

A list of 2D tools is followed by a listing of 3D tools. Internet tools are described at the end of this listing. Not all of the tools available in AutoCAD 2010 are shown here.

About - Brings the About AutoCAD bitmap on screen
Appload - Brings the Load/Unload Applications dialog to screen
Adcenter (dc) - Brings the DesignCenter palette on screen
Align (al) - Aligns objects between chosen points
Arc (a) - Creates an arc
Area - States in square units the area selected from a number of points
Array (ar) - Creates Rectangular or Polar arrays in 2D
Ase - Brings the dbConnect Manager on screen
Attdef - Brings the Attribute Definition dialog on screen
Attedit - Allows editing of attributes from the Command line
Audit - Checks and fixes any errors in a drawing
Autopublish - Creates a DWF file for the drawing on screen
Bhatch (h) - Brings the Boundary Hatch dialog on screen
Block - Brings the Block Definition dialog on screen
Bmake (b) - Brings the Block Definition dialog on screen
Bmpout - Brings the Create Raster File dialog on screen
Boundary (bo) - Brings the Boundary Creation dialog on screen
Break (br) - Breaks an object into parts
Cal - Calculates mathematical expressions
Chamfer (cha) - Creates a chamfer between two entities
Chprop (ch) - Brings the Properties window on screen
Circle (c) - Creates a circle
Copytolayer - Copies objects from one layer to another

Copy (co) - Creates a single or multiple copies of selected entities
Copyclip (Ctrl + C) - Copies a drawing or part of a drawing for inserting into a document from another application
Copylink - Forms a link between an AutoCAD drawing and its appearance in another application such as a word-processing package
Customize - Brings the Customize dialog to screen, allowing the customisation of toolbars, palettes etc.
Dashboard - Has the same action as Ribbon
Dashboardclose - Closes the Ribbon
Ddattdef (at) - Brings the Attribute Definition dialog to screen
Ddatte (ate) - Edits individual attribute values
Ddcolor (col) - Brings the Select Color dialog on screen
Ddedit (ed) - The Text Formatting dialog box appears on selecting text
Ddim (d) - Brings the Dimension Style Manager dialog box on screen
Ddinsert (i) - Brings the Insert dialog on screen
Ddmodify - Brings the Properties window on screen
Ddosnap (os) - Brings the Drafting Settings dialog on screen
Ddptype - Brings the Point Style dialog on screen
Ddrmodes (rm) - Brings the Drafting Settings dialog on screen
Ddunits (un) - Brings the Drawing Units dialog on screen
Ddview (v) - Brings the View Manager on screen
Del - Allows a file to be deleted
Dgnexport - Creates a MicroStation V8 dgn file from the drawing on screen
Dgnimport - Allows a MicroStation V8 dgn file to be imported as an AutoCAD dwg file
Dim - Starts a session of dimensioning
Dimension tools - The Dimension toolbar contains the following tools Linear, Aligned, Arc Length, Ordinate, Radius, Jogged, Diameter, Angular, Quick Dimension, Baseline, Continue, Quick Leader, Tolerance, Center Mark, Dimension Edit, Dimension Edit Text, Update and Dimension Style
Dim1 - Allows the addition of a single dimension to a drawing
Dist (di) - Measures the distance between two points in coordinate units
Distantlight - Creates a distant light
Divide (div) - Divides an entity into equal parts
Donut (do) - Creates a donut
Dsviewer - Brings the Aerial View window on screen
Dtext (dt) - Creates dynamic text. Text appears in drawing area as it is entered
Dxbin - Brings the Select DXB File dialog on screen
Dxfin - Brings the Select File dialog on screen
Dxfout - Brings the Save Drawing As dialog on screen

Ellipse (el) - Creates an ellipse
Erase (e) - Erases selected entities from a drawing
Exit - Ends a drawing session and closes AutoCAD 2010
Explode (x) - Explodes a block or group into its various entities
Explorer - Brings Windows Explorer on screen
Export (exp) - Brings the Export Data dialog on screen
Extend (ex) - To extend an entity to another
Fillet (f) - Creates a fillet between two entities
Filter - Brings the Object Selection Filters dialog on screen
Gradient - Brings the Hatch and Gradient dialog on screen
Group (g) - Brings the Object Grouping dialog on screen
Hatch - Allows hatching by the entry responses to prompts
Hatchedit (he) - Allows editing of associative hatching
Help - Brings the AutoCAD 2010 Help: User Documentation dialog on screen
Hide (hi) - Hides parts behind 3D meshes in 3D models
Id - Identifies a point on screen in coordinate units
Imageadjust (iad) - Allows adjustment of images
Imageattach (iat) - Brings the Select Image File dialog on screen
Imageclip - Allows clipping of images
Import - Brings the Import File dialog on screen
Insert (i) - Brings the Insert dialog on screen
Insertobj - Brings the Insert Object dialog on screen
Isoplane $(\mathrm{Ctrl}+\mathrm{E})-$ Sets the isoplane when constructing an isometric drawing
Join (j) - Joins lines which are in line with each other or arcs which are from the same centre point
Laycur - Changes layer of selected objects to current layer
Layer (la) - Brings the Layer Properties Manager dialog on screen
Layout - Allows editing of layouts
Lengthen (len) - Lengthens an entity on screen
Limits - Sets the drawing limits in coordinate units
Line (1) - Creates a line
Linetype (lt) - Brings the Linetype Manager dialog on screen
List (li) - Lists in a text window details of any entity or group of entities selected
Load - Brings the Select Shape File dialog on screen
Ltscale (lts) - Allows the linetype scale to be adjusted
Measure (me) - Allows measured intervals to be placed along entities
Menu - Brings the Select Customization File dialog on screen
Menuload - Brings the Load/Unload Customizations dialog on screen
Mirror (mi) - Creates an identical mirror image of selected entities
Mledit - Brings the Multiline Edit Tools dialog on screen

Mline (ml) - Creates mlines
Mlstyle - Brings the Multiline Styles dialog on screen
Move (m) - Allows selected entities to be moved
Mslide - Brings the Create Slide File dialog on screen
Mspace (ms) - When in PSpace changes to MSpace
Mtext (mt or t) - Brings the Multiline Text Editor on screen
Mview (mv) - To make settings of viewports in Paper Space
Mvsetup - Allows drawing specifications to be set up
New $(\mathrm{Ctrl}+\mathrm{N})$ - Brings the Select template dialog on screen
Notepad - For editing files from Windows Notepad
Offset (o) - Offsets selected entity by a stated distance
Oops - Cancels the effect of using Erase
Open - Brings the Select File dialog on screen
Options - Brings the Options dialog to screen
Ortho - Allows ortho to be set ON/OFF
Osnap (os) - Brings the Drafting Settings dialog to screen
Pagesetup - Brings either the Page Setup Manager on screen
Pan (p) - Drags a drawing in any direction
Pbrush - Brings Windows Paint on screen
Pedit (pe) - Allows editing of polylines. One of the options is Multiple, allowing continuous editing of polylines without closing the command
Pline (pl) - Creates a polyline
Plot (Ctrl + P) - Brings the Plot dialog to screen
Point (po) - Allows a point to be placed on screen
Polygon (pol) - Creates a polygon
Polyline (pl) - Creates a polyline
Preferences (pr) - Brings the Options dialog on screen
Preview (pre) - Brings the print/plot preview box on screen
Properties - Brings the Properties palette on screen
Psfill - Allows polylines to be filled with patterns
Psout - Brings the Create Postscript File dialog on screen
Purge (pu) - Purges unwanted data from a drawing before saving to file
Qsave - Saves the drawing file to its current name in AutoCAD 2010
Quickcalc (qc) - Brings the QUICKCALC palette to screen
Quit - Ends a drawing session and closes down AutoCAD 2010
Ray - A construction line from a point
Recover - Brings the Select File dialog on screen to allow recovery of selected drawings as necessary
Recoverall - Repairs damaged drawing
Rectang (rec) - Creates a pline rectangle
Redefine - If an AutoCAD command name has been turned off by Undefine, Redefine turns the command name back on
Redo - Cancels the last Undo

Redraw (r) - Redraws the contents of the AutoCAD 2010 drawing area
Redrawall (ra) - Redraws the whole of a drawing
Regen (re) - Regenerates the contents of the AutoCAD 2010 drawing area
Regenall (rea) - Regenerates the whole of a drawing
Region (reg) - Creates a region from an area within a boundary
Rename (ren) - Brings the Rename dialog on screen
Revcloud - Forms a cloud-like outline around objects in a drawing to which attention needs to be drawn
Ribbon - Brings the ribbon on screen
Ribbonclose - Closes the ribbon
Save (Ctrl + S) - Brings the Save Drawing As dialog box on screen
Saveas - Brings the Save Drawing As dialog box on screen
Saveimg - Brings the Render Output File dialog on screen
Scale (sc) - Allows selected entities to be scaled in size - smaller or larger
Script (scr) - Brings the Select Script File dialog on screen
Setvar (set) - Can be used to bring a list of the settings of set variables into an AutoCAD Text window
Shape - Inserts an already loaded shape into a drawing
Shell - Allows MS-DOS commands to be entered
Sketch - Allows freehand sketching
Solid (so) - Creates a filled outline in triangular parts
Spell (sp) - Brings the Check Spelling dialog on screen
Spline (spl) - Creates a spline curve through selected points
Splinedit (spe) - Allows the editing of a spline curve
Status - Shows the status (particularly memory use) in a Text window
Stretch (s) - Allows selected entities to be stretched
Style (st) - Brings the Text Styles dialog on screen
Tablet (ta) - Allows a tablet to be used with a pointing device
Tbconfig - Brings the Customize User Interface dialog on screen to allow configuration of a toolbar
Text -Allows text from the Command line to be entered into a drawing
Thickness (th) - Sets the thickness for the Elevation command
Tilemode - Allows settings to enable Paper Space
Tolerance - Brings the Geometric Tolerance dialog on screen
Toolbar (to) - Brings the Customize User Interface dialog on screen
Trim (tr) - Allows entities to be trimmed up to other entities
Type - Types the contents of a named file to screen
UCS - Allows selection of UCS (User Coordinate System) facilities
Undefine - Suppresses an AutoCAD command name
Undo (u) (Ctrl +Z) - Undoes the last action of a tool
View - Brings the View dialog on screen
Vplayer - Controls the visibility of layers in Paper Space
Vports - Brings the Viewports dialog on screen

Vslide - Brings the Select Slide File dialog on screen
Wblock (w) - Brings the Create Drawing File dialog on screen
Wmfin - Brings the Import WMF dialog on screen
Wipeout - Forms a polygonal outline within which all crossed parts of objects are erased
Wmfopts - Brings the WMF in Options dialog on screen
Wmfout - Brings the Create WMF File dialog on screen
Xattach (xa) - Brings the Select Reference File dialog on screen
Xline - Creates a construction line
Xref (xr) - Brings the Xref Manager dialog on screen
Zoom (z) - Brings the zoom tool into action

3D tools

3darray - Creates an array of 3D models in 3D space
3dface (3f) - Creates a 3- or 4-sided 3D mesh behind which other features can be hidden
3dmesh - Creates a 3D mesh in 3D space
3dcorbit - Allows methods of manipulating 3D models on screen
3ddistance - Allows the controlling of the distance of 3D models from the operator
3dfly - Allows walkthroughs in any 3D plane
3dforbit - Controls the viewing of 3D models without constraint
3dmove - Shows a 3D move gizmo. Moves 3D objects
3dorbit (3do) - Allows a continuous movement and other methods of manipulation of 3D models on screen
3dorbitctr - Allows further and a variety of other methods of manipulation of 3D models on screen
3dpan - Allows the panning of 3D models vertically and horizontally on screen
3drotate - Displays a 3D rotate gizmo. Rotates 3D objects
3dscale - Shows a 3D scale gizmo. Scales 3D objects
3dsin - Brings the 3D Studio File Import dialog on screen
3dsout - Brings the 3D Studio Output File dialog on screen
3ddwf - Brings up the Export 3D DWF dialog on screen
3dwalk - Starts walk mode in 3D
anipath - Opens the Motion Path Animation dialog
Align - Allows selected entities to be aligned to selected points in 3D space
Ameconvert - Converts AME solid models (from Release 12) into
AutoCAD 2000 solid models
Box - Creates a 3D solid box

Cone - Creates a 3D model of a cone
convertoldlights - Converts lighting from previous releases to AutoCAD 2010 lighting
convertoldmaterials - Converts materials from previous releases to AutoCAD 2010 materials
convtosolid - Converts plines and circles with thickness to 3D solids
convtosurface - Converts objects to surfaces
Cylinder - Creates a 3D cylinder
Dducs (uc) - Brings the UCS dialog on screen
Edgesurf - Creates a 3D mesh surface from four adjoining edges
Extrude (ext) - Extrudes a closed polyline
Flatshot - Brings the Flatshot dialog to screen
Freepoint - Point light created without settings
Freespot - Spot light created without settings
Helix - Constructs a helix
Interfere - Creates an interference solid from a selection of several solids
Intersect (in) - Creates an intersection solid from a group of solids
Light - Enables different forms of lighting to be placed in a scene
Lightlist - Opens the Lights in Model palette
Loft - Activates the Loft command
Materials - Opens the Materials palette
Matlib - Outdated instruction
Mesh - Can be used to set tessellations for a 3D primitive
Meshrefine - Refines the meshing of a 3D object
Meshsmooth - Increases the smoothness of 3D objects
Meshsmooth - Smoothes outlines of 3D objects
Mirror3d - Mirrors 3D models in 3D space in selected directions
Mview (mv) - When in PSpace brings in MSpace objects
Pface - Allows the construction of a 3D mesh through a number of selected vertices
Plan - Allows a drawing in 3D space to be seen in plan (UCS World)
Planesurf - Creates a planar surface
Pointlight - Allows a point light to be created
Pspace (ps) - Changes MSpace to PSpace
Pyramid - Creates a pyramid
-render - Can be used to make rendering settings from the command line.
Note the hyphen (-) must precede render
Renderpresets - Opens the Render Presets Manager dialog
Renderwin - Opens the Render window
Revolve (rev) - Forms a solid of revolution from outlines
Revsurf - Creates a solid of revolution from a pline
Rmat - Brings the Materials palette on screen
Rpref (rpr) - Opens the Advanced Render Settings palette

Section (sec) - Creates a section plane in a 3D model
Shade (sha) - Shades a selected 3D model
Slice (sl) - Allows a 3D model to be cut into several parts
Solprof - Creates a profile from a 3D solid model drawing
Sphere - Creates a 3D solid model sphere
Spotlight - Creates a spotlight
Stlout - Saves a 3D model drawing in ASCII or binary format
Sunproperties - Opens the Sun Properties palette
Sweep - Creates a 3D model from a 2D outline along a path
Tabsurf - Creates a 3D solid from an outline and a direction vector
Torus (tor) - Allows a 3D torus to be created
Ucs - Allows settings of the UCS plane
Union (uni) - Unites 3D solids into a single solid
View - Creates view settings for 3D models
Visualstyles - Opens the Visual Styles Manager palette
Vpoint - Allows viewing positions to be set from x, y, z entries
Vports - Brings the Viewports dialog on screen
Wedge (we) - Creates a 3D solid in the shape of a wedge
Xedges - Creates a 3D wireframe for a 3D solid

Internet tools

Etransmit - Brings the Create Transmittal dialog to screen
Publish - Brings the Publish dialog to screen

Appendix B

Some set variables

Introduction

AutoCAD 2010 is controlled by a large number of variables (over 460 in number), the settings of many of which are determined when making entries in dialogs. Others have to be set at the command line. Some are read-only variables which depend upon the configuration of AutoCAD 2010 when it was originally loaded into a computer (default values). Only a limited number of the variables are shown here.

A list follows of those set variables which are of interest in that they often require setting by entering figures or letters at the command line. To set a variable, enter its name at the command line and respond to the prompts which arise.

To see all set variables, enter set (or setvar) at the command line:
Command:enter set right-click
SETVAR Enter variable name or ?:enter ?
Enter variable name to list <*>:right-click
And a Text window opens showing a first window with a list of the first of the variables. To continue with the list press the Return key when prompted and at each press of the Return key another window opens.

To see the settings for each set variable enter the name of the variable at the command line, followed by pressing the F1 key, which brings up the Help screen, click the search tab, followed by entering set variables in the Ask field. From the list then displayed the various settings of all set variables can be read.

Some of the set variables

ANGDIR - Sets angle direction. $\mathbf{0}$ counterclockwise; $\mathbf{1}$ clockwise
APERTURE - Sets size of pick box in pixels
AUTODWFPUBLISH - Sets Autopublish on or off
BLIPMODE - Set to $\mathbf{1}$ marker blips show; set to $\mathbf{0}$ no blips
COMMANDLINE - Opens the command line palette
COMMANDLINEHIDE - Closes the command line palette
COPYMODE - Sets whether Copy repeats

Note

DIM variables - There are over 70 variables for setting dimensioning, but most are in any case set in the Dimension Styles dialog or as
dimensioning proceeds. However, one series of the Dim variables may be of interest:
DMBLOCK - Sets a name for the block drawn for an operator's own arrowheads. These are drawn in unit sizes and saved as required
DIMBLK1 - Operator's arrowhead for first end of line
DIMBLK2 - Operator's arrowhead for other end of line

DRAGMODE - Set to $\mathbf{0}$ no dragging; set to $\mathbf{1}$ dragging on; set to $\mathbf{2}$ automatic dragging
DRAG1 - Sets regeneration drag sampling. Initial value is 10
DRAG2 - Sets fast dragging regeneration rate. Initial value is 25
FILEDIA - Set to $\mathbf{0}$ disables Open and Save As dialogs; set to $\mathbf{1}$ enables these dialogs
FILLMODE - Set to $\mathbf{0}$ hatched areas are filled with hatching; set to $\mathbf{0}$ hatched areas are not filled; set to $\mathbf{0}$ and plines are not filled
GRIPS - Set to $\mathbf{1}$ and grips show; set to $\mathbf{0}$ and grips do not show
LIGHTINGUNITS - Set to $\mathbf{1}$ (international) or $\mathbf{2}$ (USA) for photometric lighting to function
MBUTTONPAN - Set to $\mathbf{0}$ no right-click menu with the Intellimouse; set to 1 Intellimouse right-click menu on
MIRRTEXT - Set to $\mathbf{0}$ text direction is retained; set to $\mathbf{1}$ text is mirrored
NAVVCUBE - Sets the ViewCube on/off
NAVVCUBELOCATION - Controls the position of the ViewCube between top-right (0) and bottom-left (3)
NAVVCUBEOPACITY - Controls the opacity of the ViewCube from 0 (hidden) to $\mathbf{1 0 0}$ (dark)
NAVVCUBESIZE - Controls the size of the ViewCube between $\mathbf{0}$ (small to 2 (large)
PELLIPSE - Set to $\mathbf{0}$ creates true ellipses; set to $\mathbf{1}$ polyline ellipses
PERSPECTIVE - Set to $\mathbf{0}$ places the drawing area into parallel projection; set to $\mathbf{1}$ places the drawing area into perspective projection
PICKBOX - Sets selection pick box height in pixels
PICKDRAG - Set to $\mathbf{0}$ selection windows picked by two corners; set to $\mathbf{1}$ selection windows are dragged from corner to corner
RASTERPREVIEW - Set to $\mathbf{0}$ raster preview images not created with drawing; set to $\mathbf{1}$ preview image created
SHORTCUTMENU - For controlling how right-click menus show: $\mathbf{0}$ all disabled; $\mathbf{1}$ default menus only; $\mathbf{2}$ edit mode menus; $\mathbf{4}$ command mode menus; $\mathbf{8}$ command mode menus when options are currently available. Adding the figures enables more than one option

SURFTAB1 - Sets mesh density in the M direction for surfaces generated by the Surfaces tools
SURFTAB2 - Sets mesh density in the N direction for surfaces generated by the Surfaces tools
TEXTFILL - Set to $\mathbf{0}$ True Type text shows as outlines only; set to $\mathbf{1}$ True Type text is filled
TIILEMODE - Set to $\mathbf{0}$ Paper Space enabled; set to $\mathbf{1}$ tiled viewports in Model Space
TOOLTIPS - Set to $\mathbf{0}$ no tooltips; set to $\mathbf{1}$ tooltips enabled
TPSTATE - Set to $\mathbf{0}$ and the Tool Palettes window is inactive; set to $\mathbf{1}$ and the Tool Palettes window is active
TRIMMODE - Set to $\mathbf{0}$ edges not trimmed when Chamfer and Fillet are used; set to $\mathbf{1}$ edges are trimmed
UCSFOLLOW - Set to $\mathbf{0}$ new UCS settings do not take effect; set to $\mathbf{1}$
UCS settings follow requested settings
UCSICON - Set OFF UCS icon does not show; set to ON it shows

Page numbers followed by f and n indicate figures and notes, respectively

A

Abbreviation for tool names, 50
acadiso, drawing template, 86, 93, 94f
acadiso.dwt template, 18, 19, 28, 186, 230n
dimension style in, 130
initial settings in, $19 n$
setting grid to $10,18 f$
setting limits to $420,297,18 f$
setting snap to $5,18 f$
setting units to $0,19 f$
zooming to all, $18 f$
Advanced Render Settings palette, $308 f$
Aerial View window, 84-85
Aligned dimension, $132 f$
Aligned tool, 131f, 132
All option, Zoom command, 82
All Palettes palette, $298 f$
ANGLE hatch patterns, 172
Angular dimension, 135-136, $136 f$
Annotate/Dimensions panel, 130f, 131f
ANSI31 icon, 155, $155 f$
Application Status Bar Menu, 15, $15 f$
Arc Length tool, 138-139, $138 f$
Arc tool, 51-53
examples, 52-53, $52 f$
flyout in the Home/ Draw panel, $52 f$
Array dialog, 106f, 107f
Array tool
Polar, 106-108, $108 f$
Rectangular, 105-106, 107f
selecting, $106 f$
Associative hatching, 166, 167f
A3_template.dwt, 95-96, $95 f$
Attach External Reference dialog, $200 f$
Attach Image, in External References palette icon, 380-381, 381f
Attach Image dialog, $197 f$
AutoCAD 2010
in designing, 408-409
importing *.dgn into, 201-202
major enhancements in, 410-411
reasons to use, 408
system requirements for, 411
AutoCAD Classic, 21, $21 f$
window, $22 f$
workspace, $22 f$
AutoCAD 2D coordinate system, 16
AutoCAD Drawing Template (*.dwt), 19, 93, $94 f$
AutoCAD grid points
set for isometric drawing, $157 f$
AutoCAD Message, 146, $146 f$
AutoCAD 2010 shortcut icon, $4 f$
AutoCAD SHX fonts, 143
AutoCAD Text Window, 142, $142 f$
AutoCAD window
with the panels minimised, $24 f$
setting for isometric drawing, 156-157
Autodesk DWF Viewer
62 Pheasant Drive.dwf in, 214, $216 f$
Auto-hide icon, 6, 10

B

Background dialog, 307f
Bitmap images (*.bmp), 196, 197
Block Definition dialog, 178, 179f, 180f
Block drawings, 9 , $9 f$
Blocks
defined, 178
description of, $184 n$
example of, 178-179
icons, $184 f$
inserting, in drawing, 179-184
symbol used as, $178 f$
written (see Wblocks)
.bmp (see Bitmap images (.bmp))
Boolean operators, 243
Boundary Hatch and Fill dialog, 155, $155 f$
_box, 236
Box tool, 236, $236 f$
_break, 116

Break tool, 116-117, 116f, 403-405, 404f
Brick hatching, 166
BRICK hatch patterns, 172
Browse for Drawing File dialog, 189
Buildings, drawings
assembling walls, 330-331
constructing fence of, 333
constructing fields of, 333
constructing roads of, 333
floor layouts of, $325 f, 326 f$
garage, 331, $331 f$
site layout plan of, $325 f$
site plan of, $324 f$
symbols, $328 f$
3D models of, 328-335
view of, $326 f$
Buttons, 12
Close dialog, 12
at the left-hand end of the status bar, 13-14
Minimize to Panel Titles, 23, 24
Modify, 140
Pick, 8
Pick an internal point, 155, 155f, 168, 168f
Pick center point, $108 f$
Pick Point, 178, 179f
Preview, 106, $106 f$
Quick View Drawings, 24, $24 f$
Radio, 13
Return, 8
at the right-hand end of the status bar, $15,15 f$
Select Objects, 106, 106f, 178, 179f
Tool Palettes, $297 f$
Update, 195

C

CAM (see Computer aided machining (CAM))
Center option, Zoom command, 82
_chamfer, 120, 122, 242
Chamfer tools, 120, 122-123, $122 f$
in 3D modeling, 240-243, 240f
Check box
Explode, 184, $184 f$
ISO, 89
Check Spelling dialog, 145, 146f
Choose Layouts dialog, 212, $213 f$

Circle tool
Deferred Tangent, 37n
drawing with, 36-37
from the Home/Draw panel, $36 f$
Circle tool icon, 6, $7 f$
Classic AutoCAD, 50. see also AutoCAD 2010
Classic workspace, $96,96 f$
Clean Screen icon, 62
Clear Screen icon, 21
Close button, 89, $90 f$
Close dialog button, 12
Color Faces tool, $371 f, 372 f$
command line, 371-372
Color gradient hatching, 166-169
Column field, 106, $106 f$
Column offset field, 106, $106 f$
Command line dimensions
al (see Aligned dimension)
an (see Angular dimension)
hor (see Horizontal linear dimension)
1 (see Leader dimension)
te (see Dimension Text Edit)
tedit (see Dimension Text Edit)
commandlinehide, 62
Command palette, $6,6 f, 9,12,18,20,20 n$
Commands
_box, 236
_break, 116
_chamfer, 120, 122, 242
_copy, 100, 101
_cylinder, 237, 241n
_3darray, 273
ddedit, 145, $145 f$
_dimarc, 139
_dimjogged, 139
_dimlinear, 131
_dimradius, 132-133
_distantlight, 309-310
_3dmirror, 276, 277
3DROTATE, 278
dt, 141
_ellipse, 157
_explode, 184
_extend, 119
_extrude, 231
_fillet, 120, 121, 241-242
_Helix, 286-287
_imageattach, 198
INSERT, 181
_join, 117
_loft, 246
_mirror, 102
mirrtext, 104
_move, 109
MVIEW, 318
_offset, 104
_pointlight, 308-309
_Polysolid, 227
_region, 228
_revolve, 234
right-click, 118
_rotate, 110
_scale, 111
_sectionplane, 280-281
_slice, 279
snap, 156
_sphere, 237, 237f
_stretch, 114
_subtract, 230
_sweep, 245
tedit, 138
_torus, 239
_trim, 112, 113
ucs, 343
_ucs, 347, 349
_union, 229, 237, 237f
_wedge, 238-239
Compass symbol, as block
creating, 178-179
Computer aided machining (CAM), 409
Cone tool, 238, $238 f$
Confirm dialog, 212, $213 f$
Confirm Password, $400 f$
Continue button, 89
_copy, 100, 101
Copy Faces tool, 370f
command line, 370-371
Copy Link, 192, $192 f$
Copy tool, 100-102, $101 f$
Create New Dimension Style dialog, 89, 90f
Create Sheet Set dialog, 210, $212 f$

Create tool, 178, $179 f$
Create Transmittal dialog, 403
Ctrl $+9,62$
Ctrl +2 key, 182
cui command, 25
Customer User Interface dialog, 4
Customize User Interface dialog, 25, $25 f$
_cylinder, 237, 241n
Cylinder tool, 237

D

Data exchange format (DXF), 195-196
saving drawing as, 195, $196 f$
Ddedit, 145, 145f
Default lighting, 304, $304 f$
Design brief, 409-410
DesignCenter, 268, $269 f$
DesignCenter palette, $9,9 f, 182 f, 186-187,189 n$.
see also Properties palette
resizing, $183 n$
Design chart, $409 f$
chosen solution, 410
design brief, 409-410
evaluation, 410
ideas for solving brief, 410
models, 410
realisation, 410
research, 410
*.dgn
importing drawing in AutoCAD, 201-202
dgnexport, 201-202
dgnimport, 201-202
Dialog, $194 f$
Array, $106 f$
Attach External Reference, $200 f$
Attach Image, $197 f$
Background, 307f
Block Definition, 178, 179f, 180f
Boundary Hatch and Fill, 155, $155 f$
Browse for Drawing File, 189
Check Spelling, 145, $146 f$
Choose Layouts, 212, $213 f$
Confirm, 212, $213 f$
Create New Dimension Style, 89, $90 f$
Create Sheet Set, 210, $212 f$

Dialog (Continued)

Dimension Style Manager, 87, 88f, 89, 90f, 140, $140 f$
Export Data, $193 f$
Hatch and Gradient, 166, 167-168, 167f
Import DGN File, $202 f$
Insert, 180, $181 f$
Layer Properties Manager, 87
Lighting - Viewport Lighting Mode, 298, $299 f$
Links Manager, 194f
Load or Reload Linetypes, 91
Loft Settings, $246 f$
Modify Dimension Style, 89, $89 f$
New View/Shot Properties, $306 f$
Options, $295 f$
Purge, 185, 185f
Save Drawing As, 93, $94 f$
Section Settings, 282
Select Color, 91, 92f, 168, 168f, 307f
Select DWF File, 214, $215 f$
Select Linetype, 91, $92 f$
Select Reference File, $197 f$
Sheet Set Details, 210, 212f
Template Description, $94 f$
Template Option, 93 , $94 f$
Text Style, 87, 87f, 143
Text Style Manager, 170
UCS, $350 f$
UCS Icon, 344
ViewCube Settings, $225 f$
View Manager, $306 f$
Viewpoint Presets, 284-286
Viewports, $256 f$
Dialogs, common parts in AutoCAD, 11-13
Buttons, 12
Close dialog button, 12
Pop-up list, 12
Preview area, 12
Title bar, 12
dim, 134
_dimarc, 139
Dimension, outline to, $133 f, 136 f$
Dimensions layer, 151, $152 f$
Dimension Style Manager dialog, 87, 88f, 89, 90f, $140,140 f$
Dimension Text Edit, 137-138, $138 f$

Dimension tolerances, 140-141, 140f
Dimension toolbar, $130 f$
Dimension tools
adding aligned dimension using, 132, $132 f$
adding linear dimension using, 130-132
adding radius dimension using, 132-133
_dimjogged, 139
_dimlinear, 131
_dimradius, 132
_distantlight, 309-310
Distant lights, 304, $304 f$
Dragging, 85
Draw drop-down menu, $50 f$
Drawings
blocks (see Blocks)
building (see Buildings, drawings)
copying and pasting, 192-193, 193f
importing *.dgn in AutoCAD, 201-202
inserting blocks in, 179-184
inserting 3D blocks in, 268-270, 269f, 270f
isometric (see Isometric drawing)
opening 3D model, 319
orthographic projection in (see Orthographic projection)
pasting, in microsoft Word, 192, $193 f$
in 62 Pheasant Drive sheet set, $211 f$
placing raster images in, 197-199
printing or plotting, 316-319
saving, 182
saving 3D model, 319
sectional views of (see Hatching)
sheet sets and, $214 n$
Drawing templates, 16-19
acadiso.dwt, 86
adding features to, 87
A3_template.dwt, 95-96, $95 f$
saving file, 93-94
setting dimension style, 88-90
setting shortcutmenu variable, $91,91 f$
setting text in, 87-88
Drawing Units dialog, 18
Draw/Modeling drop-down menu, 227f, $230 f$
Draw toolbar, 21, 21f, 50, 50f
Drop-down menu
Draw/Modeling, 227f, 230f
Edit, 192, 192f

File, $193 f$
Insert, 196, $197 f$
Modify/3D Operations, 274f
View, $82 f$
Dsviewer, 84
Dt, 141
Dtext tool, 170
DWF, sheet sets in, 214-216, $214 n$
.dwg, 56
*.dwt, 16, 19
DXF (see Data exchange format (DXF))
*.dxf, 195-196
Dynamic Input (DYN), 60-61
Clean Screen icon, 62, $62 f$
comparison with other tools, 70
dimensioning, 69, $69 f$
method of using tools, 62-63
Polyline, 64, 65f-68f
using 3D tools, 69
Zoom, 68, $68 f$
Dynamic input (DYN) system
constructing helix using, 286-287
use of, to construct 3D surface, 243-244
Dynamic Input method, 51
Dynamic option, Zoom command, 82
DYN system (see Dynamic input (DYN) system)
DYN tips, 61, 61f. see also Dynamic Input

E

Edgesurf tool, 354-355, 354f, 355f
Edit drop-down menu, 192, $192 f$
Electric/electronic circuit symbols, $186 f$
_ellipse, 157
Ellipse tool, 53, 53f, 157
axes in, 53
examples, 53-55, 54f
Ellipse tool icon flyout in the Home/Draw panel, $53 f$
Emailing, 400-401
Encapsulated PS (*.eps), 193-195
placing in PageMaker, $194 f$
*.eps, 193-195
Erase tool, 38-39
Erase tool icon from the Home/Modify panel, $38 f$
Esc key, 106
etransmit tool, 403, 403f
_explode, 184

Explode check box, 184, $184 f$
Explode tool, 184, 185f
Export Data dialog, $193 f$
_extend, 119
Extend tool, 119-120, $119 f$
Extents option, Zoom command, 82, $84 f$
External References palette icon, 380, $380 f$
External References (Xrefs), 198n, 199-201, $200 f$
_extrude, 231
Extrude Faces tool, 366f, 367f
command line, 366-367
Extrude tool, 230-233
constructing 3D surface using, 243-244

F

Face icon, $352 f$
Fastenning, library of
3D modeling and, 270-271
Fence, construction, 333
F7 (Grid Display), 57
Fields, construction, 333
File drop-down menu, 193f
Files
*.dgn, 201-202
DXF, 195-196
EPS (see Encapsulated PS (*.eps))
MDE (see Multiple Document Environment (MDE))
raster (see Raster images)
of type field, 93, 94f
Xrefs (see External references)
Files of type pop-up list, 19
selecting AutoCAD 2007 DXF [*.dxf] from, 195, $196 f$
_fillet, 120, 121, 241-242
Fillet tools, 120, 121, 121f
in 3D modeling, 240-243, 240f
First angle orthographic projection
three-view, 152, $153 f$
F3 key, 14
F5 key, 157, 158
F6 key, 14
F7 key, 14, 158
F8 key, 14
F9 key, 14, 158
F10 key, 14

F12 key, 14, 60-61
Floor layouts, 325f, 326f, 327-328, 328f
F3 (Object Snap), 57
Font name pop-up list, 87, 87f, 143
Fonts
AutoCAD SHX, 143
setting text, 170
Windows True Type, 143
Four: Equal viewports, 257-260, 257f, $260 f$
Four: Left viewports, 260-261, $261 f$
Free orbit, 314-316
F9 (Snap Mode), 57

G

Garage, 331
realistic view of, $331 f$
Generic Lights palette, $309 f$
Gradient icon, 167, $167 f$
Grid, 158
Grid Display, 57, 87
Grid spacing, 16

H

Hatch and Gradient dialog, 155, 155f, 166,

$$
167-168,167 f
$$

Hatching, 154-156, 164-172
advanced, 169, 170-172
associative, 166, $167 f$
brick, 166
color gradient, 166-169
predefined hatch patterns, $164 f$
rules, $166,166 f$
sectional view, 164-165
text in, 170, $170 f$
HATCH layer, $170 f$
construction on, $172 f$
Hatch Pattern Palette, 155, $155 f$
Hatch patterns
ANGLE, 172
BRICK, 172
HONEY, 170
predefined, $164 f, 165 f$
Hatch tool, 154, $154 f$
_Helix, 286-287
Helix tool, $286 f$
Help, on using Break, 403-405, 404f
Hidden layer, 151, $152 f$

Hidden Style plot, preview of, $319 f$
Home/Block panel, 178, 179f, 180, $181 f$
Home/Draw panel, 6, 7f, 154f, 167f, $286 f$
Home/Layers panel, 150, 152f, 170, 170f
Home/Modeling panel, $227 f$
Box tool, 236, $236 f$
Cone tool, 238, 238f
Cylinder tool, 237
Loft tool, 245-247, 247f
Sphere tool, 237, $237 f$
Sweep tool, 244-245, $245 f$
Torus tool, 239, $239 f$
Union tool, 237, $237 f$
Wedge tool, 238, $239 f$
Home/Modify panel, 100, 100f, 101f, 104f, 184, $185 f$
Home/Solid Editing panel, 229, 229f, 279f, 366. see also Solid Editing tool
Home/Solids Editing panel, 243
Home/View panel, $285 f$
HONEY hatch pattern, 170
Horizontal linear dimension, 134, 135f

I

Icon
ANSI31, 155, $155 f$
Attach Image, in External References palette, 380-381, 381f
AutoCAD 2010 shortcut, $4 f$
Auto-hide, 6
blocks, $184 f$
Circle tool, 6, $7 f$
Clean Screen, 62
Clear Screen, 21
Ellipse tool icon flyout in the Home/Draw panel, $53 f$
Erase tool icon from the Home/Modify panel, $38 f$
External References palette, 380, $380 f$
Face, $352 f$
Gradient, 167, 167f
Move, 10
New, 16, $17 f$
New Layer, 91, $91 f$
Open tool, 6, $8 f$
Publish, 214, $215 f$

Publish in Progress, 214, $215 f$
Redo tool icon in the Title bar, $\mathbf{4 0} f$
Save, 19
Sun Status, 298, $299 f$
tool, 20
Ignore radio button, 169, $169 f$
_imageattach, 198
Import DGN File dialog, $202 f$
Initial Setup dialog, $4 f$
INSERT, 181
Insert dialog, 180, $181 f$
Insert drop-down menu, 196, 197f
Insert tool, 180, 181f
Insert units, setting, 189
Island display style selections, $169,169 f$
ISO check box, 89
Isocircles, 157, $157 f$
ISOLINES, setting value of, 231, $231 n$
Isometric drawing
angles of, 157
AutoCAD grid points set for, $157 f$
circles in, 157
examples of, 158-160
isocircles, $157,157 f$
isoplanes, 157, 157f
setting AutoCAD window, 156-157
Isoplane Left, $157 f$
Isoplane Right, $157 f$
Isoplanes, 157, 157f
Isoplane Top, 157f, 158

J

Jogged tool, 139-140, $139 f$
_join, 117
Join tool, 118-119, 118f

L

Layer Control field, 170
Layer Properties Manager
dialog, 87
palette, 91, 91f, $328 f$
Layers, 170, $170 f$
Dimensions, 151, $152 f$
HATCH, $170 f$
Hidden, 151, $152 f$
setting new, $296 f$
Text, 151, 152f, $171 f$

Layout1 button, $95,95 f$
Leader dimension, 136-137, 137f
LED.dwg, 189
Length, 18-19
Light-emitting diode (LED) constructing, 188
LIGHTINGUNITS, 304
Lighting - Viewport Lighting Mode dialog, 298, $299 f$
Lights tools, 304-305, 305f
Limits, 18, 87
Linear dimension, $131 f$
horizontal, 134, $135 f$
vertical, 135, $135 f$
Linear tool, 131, $131 f$
Lines tab, $89,89 f$
Line tool, $132 f$
AutoCAD warning window, $30 f$
drawing with, 28-35
from the Home/Draw panel with its tooltip, $28 f$
prompt Command:_line Specify first point, $29 n$
tool in the Classic AutoCAD workspace, $28 f$
Lineweight dialog, 92, $92 f$
Links Manager dialog, $194 f$
Load or Reload Linetypes dialog, 91
_loft, 246
Loft Settings dialog, $246 f$
Loft tool, 245-247, $247 f$

M

Masonry material, for 3D model, 299-300, 300f
Materials palette, 302
Menu Browser, 4, $5 f$
Menus
drop down (see Drop down menu)
right-click, 91, $91 f$
Workspace Switching, $224 f$
Mesh Modeling/Primitives panel, $353 f$
Mesh tools, 389-390, 390f
Metal material, for 3D model, 300, 300f
Microsoft Word
pasting drawing in, 192, 193f
Minimize to Panel Titles button, 23, 24
_mirror, 102
MIrror tool, 102-104, 102f
MIRRTEXT, 104

Mirrtext, 104
Modify button, 140
Modify Dimension Style dialog, 89, $89 f$
Modify/3D Operations drop-down menu, $274 f$
Modify toolbar, 21, 21f, 100, 100f, 102f
Modify tools, 100
More Options arrow, 169, $169 f$
Mouse pressing
Pick button, 8
Return button, 8
_move, 109
Move Faces tool, 368, $368 f$
Move icon, 10
Move tool, 108-109, 109f, 166
Mtext, 133n
Multiline text, 143-144, $144 f$
Multiple Document Environment (MDE), 202204, $203 f$
MVIEW, 318

N

Named UCSs tab, 349, $350 f$
Name field, 178, 180f
Name pop-up list, 180, $181 f$
Navigation Wheel, 387, $389 f$
Navigation/Zoom tool, 20
New Features Workshop, 405, $405 f$
New icon, 16, $17 f$
New Layer icon, 91, $91 f$
New style name field, 89
New View/Shot Properties dialog, $306 f$
Normal radio button, 169, $169 f$

0

Object Linking and Embedding (OLE)
copying and pasting drawing, 192-193, 193f
EPS file, 193-195
Object option, Zoom command, 82
Object Snaps (Osnaps), 14n, 56-60, 57, 132n
abbreviations, examples, 58-60, 59f
abbreviations, off, $60 n$
drafting Settings dialog, $57 f$
icons and their tooltips, $58 f$
setting, 57
_offset, 104
Offset faces tool, $369 f$
command line, 368-369

Offset tool, 104-105, $104 f$
Open tool icon, 6, $8 f$
Operating system, 411
Options dialog, 12, 13f, $295 f$
Check boxes, 12
Radio buttons, 13
setting default template setting in, $296 f$
Slider, 13
Tabs, 12
Ortho, 14n
Orthographic projection
first angle, 152, $153 f$
third angle, 152, $153 f$
three-view, of solid, 150-152
two-view, $165 f$
Outer radio button, 169, $169 f$

P

PageMaker
placing *.eps file in, 194f
Palette, hatch patterns
predefined, $164 f, 165 f$
Palettes, 296-298
Advanced Render Settings, $308 f$
All Palettes, $298 f$
DesignCenter, 182f, 183n-184n
Generic Lights, $309 f$
Layer Properties Manager, 91, 91f, 328f
Materials, 302
Sheet Manager, $214 f$
Panels
Annotate/Dimensions, $130 f, 131 f$
3D modeling, 225f
Home/Block, 178, 179f, 180, 181f
Home/Draw, 154f, 167f, 286f
Home/Layers, 150, 152f, 170, 170f
Home/Modeling, 227f
Home/Modify, 100, 100f, 101f, 104f, 184, 185f
Home/Solid Editing, 229, 229f, $279 f$
Home/Solids Editing, 243
Home/View, $285 f$
Mesh Modeling/Primitives, $353 f$
Render/Render, $299 f$
Render/Sun \& Location, $299 f$
View/Coordinates, $343 f$

View/Palettes, 182f, 200f, 210, 211f, 268, $269 f$, 297f
View/Viewports, 256, 256f
View/Window, 202, $203 f$
Pan tools, 85-86, 86f
Paper Space, 17
Parallel projection
3D modeling in, 224f
Passwords, in Security Option, 400-401, $401 f$
PELLIPSE, 76
Pick an internal point button, 155, 155f, 168, $168 f$
Pick button, 8
Pick center point button, $108 f$
Pick Point button, 178, $179 f$
Planes, 3D space, $342,342 f$
Plot Preview, 386, 386f
Plot tool, 317n
_pointlight, 308-309
Point lights, 304, $304 f$
Polar Array, 106-108, 108f, 274-275, 274f, 275f
radio button, $107 f$
Polygonal viewports, 386-387, 388f
command line, 386, 387
Polygon tool, 50, 50f, 70, $71 f$
Polyline, 100
Polyline Edit tool, 72, 76
calling Edit Polyline from the Home/Modify panel, $73 f$
examples, $73-75,73 f-74 f$
Multiple Polyline Edit, 74-75, 75f
Polyline tool, 130
drawing with, 40-44
icon in the Home/Draw panel, $40 f$
_Polysolid, 227
Polysolid tool, 227
Pop-up list
Files of type, 195, $196 f$
Font name, 87, 87f, 143
Name, 180, $181 f$
Pop-up menu
Unsaved View, 284, $285 f$
Precision pop-up list, 18
Preview button, 106, 106f
Preview of my-style box, 89
Previous option, Zoom command, 82
Primary Units tab, $89,90 f, 140 f$

Printing/plotting, 383-386, 384f, 385f, 386
layout, 383, $383 f$
Properties palette, 10, 10f. see also DesignCenter palette
Publish icon, 214, $215 f$
Publish in Progress icon, 214, $215 f$
Publish to Web, 401-402, 401f, 402f
Purge dialog, 185, $185 f$

Q

Quick Access menu
Selecting Save As from the, $55 f$
Quick Access toolbar, 6, $8 f, 12,12 f, 17,17 f, 25$, $50,51 f, 317 n$
Quick View Drawings button, 24, $24 f$

R

Radio buttons, 13
Ignore, 169, $169 f$
Normal, 169, 169 f
Outer, 169, $169 f$
Polar Array, $107 f$
Rectangular Array, 105, $106 f$
Smooth Fit, $246 f$
Radius dimension, 132-133, 133f
Raster Image Reference, $197 f$
Raster images, 106, 380-382, 380f, 381f, 382f
defined, 380
placing, in a drawing, 197-199
production process, 382
Realtime option, Zoom command, 82
Rectangle tool, 70-72, 72f
from the Home/Draw panel, $70 f$
Rectangular Array, 273-274, $274 f$
radio button, 105, $106 f$
Redo tool icon in the Title bar, $40 f$
_region, 228
Region tool, 228-229
Rendering
applying materials, to 3D model, 298-303
creating new 3D template, 294-296
of 3D model
applying materials, to 3D model, 313-314
Light tools, 304-305
paletes, 296-298
Render tools, 303
Render Region, $299 f$

Render/Render panel, $299 f$
Render/Sun \& Location panel, $299 f$
Render tools, 303
Return button, 8
Return key, 142, 226
_revolve, 234
Revolve tool, 233-236, $234 f$
The Ribbon title bar, 4, 21-24
Annotate, 21
Custom User Interface dialog, 21
Home, 21, 24
Home/ Draw panel, 23f, 24, 26n
Insert, 21
Line, 24
Manage, 21
Minimize to Panel Titles button, 24
Output, 21
as a palette with its right-click menu, $23 f$
Parametric, 21
with Tool panels, $4,5 f$
Undock, 23, $23 f$
View, 21
Right-click menu, 91, $91 f, 214,216 f$
Roads, construction, 333
_rotate, 110
Rotate tool, 109-110, $110 f$
Row field, 105, $106 f$
Row offset field, 106, $106 f$
Rulesurf tool, 355, $355 f$

S

Save As, 93, $93 f$
Save Drawing As dialog, 19, 56f, 93, 94f
Save icon, 19
Saving drawings, 55-56
_scale, 111
Scale option, Zoom command, 82
Scale tool, 111, 111f
Second point of displacement, $115 n$
_sectionplane, 280-281
Section Plane tool, 280-283, $281 f$
Section Settings dialog, 282
Security Options, 400, $400 f$
Confirm Password, 400f
Password dialog, 400-401, 401f
Select Color dialog, 91, $92 f, 168,168 f, 307 f$

Select DWF File dialog, 214, $215 f$
Select File dialog, 6, $8 f, 12,12 f$
Select Linetype dialog, 91, $92 f$
Select Objects button, 106, 106f, 178, $179 f$
Select Reference File, in External References palette icon, 380, $381 f$
Select Reference File dialog, $197 f$
Select template dialog, 16, 17f
Set Current button, 89, $90 f$
Sheet Manager palette
for 62 Pheasant Drive, $214 f$
Sheet Set Details dialog, 210, $212 f$
Sheet Set Manager, 210, $211 f$
publish icon in, 214, 215f
Sheet sets
drawings and, $214 n$
in DWF format, 214-216, 214n
for 62 Pheasant Drive, 210-214
Shortcutmenu, 91, $91 f$
variable, $87,91,91 f$
Show Menu Bar, 50, $51 f$
Single line text, 141-143
62 Pheasant Drive
in Autodesk DWF Viewer, $216 f$
drawings in, $211 f$
in DWF format, 214-216
Sheet Manager palette for, $214 f$
sheet sets for, 210-214
_slice, 279
Slice tool, 278-280, $279 f$
Smooth Fit radio button, $246 f$
Snap, 14n, 18, 56-57, 158
command, 156
spacing, 16
Snap Mode, 57, 87
SOLIDCHECK, 367
Solid Editing tools
Color Faces, 371-372, 371f, 372f
Copy Faces, 370-371, $370 f$
Extrude Faces, 366-367, 366f, $367 f$
Move Faces, 368, $368 f$
Offset Faces, 368-369, $369 f$
Taper Faces, 369-370, $369 f$
toolbar, 366, 366f
Spell checking, 145-146, 146f
Spelling tool, 145-146, $146 f$
_sphere, 237, 237f
Sphere tool, 237, 237f
Spot lights, 304, 304f
Standard Annotation toolbar, 19, $19 f$
STARS hatch patterns, 169
Status bar, buttons at the left-hand end of the
Allow/Disallow Dynamic UCS, 14
Dynamic Input, 14
Grid Display, 14
Object Snap, 14
Object Snap Tracking, 14
Ortho Mode, 14
Polar Tracking, 14
Quick Properties, 14
Show/Hide Lineweight, 14
Snap Mode, 14
Status bar, buttons at the right-hand end of the, $15,15 f$
Steam venting valve
UCS and, 345-346, $346 f$
_stretch, 114
Stretch tool, 114-115, $115 f$
_subtract, 230
Subtract tool, 230
3D modeling, 230
Suggestions field, 145
Sun Status icon, 298, $299 f$
Surftab1, 354
Surftab2, 354
Swatch field, 155, $155 f$
_sweep, 245
Sweep tool, 244-245, $245 f$
Symbols
and Arrows tab, 89, $90 f$
building, $328 f$
compass, creating, 178-179
electric/electronic circuit, $186 f$
LED, constructing, 188
used as blocks, $178 f$
used in text, 144
System requirements
for AutoCAD 2010, 411

T

Tabs
Lines, 89, $89 f$

Named UCSs, 349, $350 f$
Primary Units, 89, 90f, 140f
Symbols and Arrows, 89, $90 f$
Tabsurf tool, 355-356, 356f
Taper Faces tool, $369 f$
command line, 369-370
Template Description dialog, $94 f$
Template Option dialog, 93, 94f
Templates
drawing, drawing templates
setting background colours of, $295 f$
setting new 3D, 294-296
62 Pheasant Drive.dwt, 210-214
Text
fonts, 143
in hatching, 170
multiline, 143-144, $144 f$
setting font, 170
single line, 141-143
spell checking, 145-146, $146 f$
styles, 143
symbols used in, 144
Text Formatting box, 144
Text layer, 151, $152 f$
construction on, $171 f$
Text Style dialog, 87, 87f, 143
Text Style Manager dialog, 170
Third angle orthographic projection
three-view, 152, $153 f$
Three: Right viewports, 261-262, $262 f$
_3darray, 273, 274, 275
3D array tool, $274 f$
Polar array, 274-275, 274f, $275 f$
Rectangular array, 273-274, $274 f$
3D coordinate points in the AutoCAD coordinate system, $17 f$
_3dmirror, 276, 277
3D mirror tool, 276-277, $276 f$
3D modeling
applying materials to, 298-301
Box tool in, 236, $236 f$
of buildings, 328-335
calling tools for, 225-226
Chamfer tools in, 240-243, $240 f$
constructing, 271-273
constructing line outline, $228 f$

3D modeling (Continued)
Cylinder tool, 237
3D Array tool (see 3D Array tool)
3D Mirror tool (see 3D Mirror tool)
2D outlines for, 227-230
3D Polyline tool in, 232, 232f
3D Rotate tool (see 3D Rotate tool)
3D surfaces, 287-289
Extrude tool in, 230-233
Fillet tools in, 240-243, $240 f$
free orbit, 314-316
of hut, $334 f$
inserting 3D blocks, in drawing, 268-270, 269f, $270 f$
library of fastening and, 270-271
lights tools, 304-305, 305f
Line tool in, 228
Loft tool in, 245-247, $247 f$
modifications to applied material, 301-303
opening drawings, 319
palettes, 296-298
panels, $225 f$
in parallel projection, $224 f$
Polysolid tool in, 227, 227f
realistic view of, $330 f$
Region tool in, 228-229
rendering (see Rendering)
Render tools, 303
Revolve tool in, 233-236, $234 f$
saving drawings, 319
Section Plane tool (see Section Plane tool)
selecting, from Workspace Switching menu, $224 f$
setting new template, 294-296
Slice tool (see Slice tool)
Sphere tool, 237, 237f
Subtract tool in, 230
Sweep tool in, 244-245, $245 f$
Torus tool in, 239, $239 f$
Union tool in, 229, 229f, 237, $237 f$
using DYN in, to constrcut surface, 243-244
viewport systems in (see Viewports, in 3D modeling)
views of, 283-286
Wedge tool, 238, $239 f$
workspace, 224-225, 224f, 294f
*.3ds, 199n
3D Polar array, 274-275, 274f, 275f
3D Polyline tool, 232, $232 f$
3D Rectangular array, 273-274, 274f
3DROTATE, 278
3D rotate tool, 278
3D solid models
dimensions, 373-374, 373f
editing, 366-378
Mesh tools, 389, $390 f$
Navigation Wheel, 387, $389 f$
polygonal viewports, 386-387, $388 f$
printing/plotting (see Printing/plotting)
raster images (see Raster images)
sizes and shapes, 372-373, $373 f, 374$, $374 f, 375 f$
3D space
constructing 2D objects in, 350-353
planes, 342, 342f
UCS (see User coordinate system (UCS))
3D surfaces, 287-289, 353
3D surface tools
Edgesurf tool, 354-355, 354f, 355f
Rulesurf tool, 355, $355 f$
surface mashes, 354
Tabsurf tool, 355-356, 356f
Three-view orthographic projection, 84
of solid, 150-152
Three-view projection
of pressure head, $272 f$
Tile Horizontally, 202, $203 f$
Tolerances, 140f, 141, 141f
Toolbar
Quick Access, 317n
Tool icons, 20
Tool names, abbreviation for, 50
Tool Palettes, 10, $11 f$
button, $297 f$
Tool panels, 6
Tools, 20
Tools/Toolbars/AutoCAD, 366
_torus, 239
Torus tool, 239, $239 f$
Transparent command
examples, 75-76
Tree View Toggle, 183n, $184 f$
_trim, 112, 113

Trim tool, 112-114, $112 f$
Two-button mouse, $8 f$
2D coordinate points in the AutoCAD coordinate system, $16 f$
2D Drafting \& Annotation, 4
workspace, 4, 5f, 28, $28 f$
2D drawings
outlines, for 3D modeling, 227-230
2D objects
constructing in 3D space, 350-353
Two-view orthographic projection, $165 f$

\mathbf{U}

UCS (see User coordinate system (UCS))
_ucs, 347, 349
UCSFOLLOW, 343
UCS Icon dialog, 344
Undo and Redo tools, 39-40
Undo tool in the Title bar, $40 f$
_union, 229, 237, 237f
Union tool, 229, 229f, 237, 237f
Unsaved View pop-up menu, 284, $285 f$
USB memory stick
saving a drawing to, 56
User coordinate system (UCS)
changing planes using, 344-345, 345f
constructing 3point, 350-351
dialog, $350 f$
icon, 343-344, 344f
3-Point icon, $348 f$
saving plane views, 349-350
steam venting valve, $345-346,346 f$
toolbars, $343 f$
UCSFOLLOW variable, 343
X tool, $349 f$
XY plane in, $342 n$

V

Variables
Surftab1, 354
Surftab2, 354
UCSFOLLOW, 343
View, drop down menu, $82 f$
View/Coordinates panel, $343 f$
ViewCube, $283 f$
Top in, $227 f$
views using, $284 f$

ViewCube/Front view, 328f
ViewCube/Isometric view, $329 f$
ViewCube Settings dialog, 225f
View DWF file option, 214, $216 f$
View Manager dialog, $306 f$
View/Palettes panel, 10, 10f, 11f, 182f, 200f, 210,
211f, 268, 269f, 297f
Viewpoint Presets dialog, 284-286
Viewports, in 3D modeling, 256
Four: Equal, 257-260, 257f, $260 f$
Four: Left, 260-261, $261 f$
Three: Right, 261-262, $262 f$
Viewports dialog, $256 f$
View/Viewports panel, 256, 256f
View/Window panel, 202, $203 f$

W

Walls, assembling, 330-331
Wblocks, 187-189, $188 f$
defined, 178
Web page, creation, 401-402
_wedge, 238-239
Wedge tool, 238, $239 f$
Where to look field, 145
Window option, Zoom command, 82, 83f, 85, $85 f$
Windows True Type fonts, 143
Wood material, for 3D model, 301, $301 f$
Workspace
3D modeling, 224-225, $294 f$
Settings icon, 224
Switching icon, 21, $21 f$
Switching menu, 6, 6f, $224 f$
WORLD plane, $342 n$
X
Xrefs (see External References (Xrefs))
XY plane, 342, $342 f$
XZ plane, 342 , $342 f$

Y

YZ plane, 342, 342f

Z

Zoom, 18
Zoom button, 82
Zoom command, 82
Zoom tools, 82-84, 86

